1.清远市人民医院超声科,广东 清远 511500
2.中山大学附属第三医院超声科,广东 广州 510630
陈文波,博士,住院医师,E-mail:chenwbo6@mail2.sysu.edu.cn
纸质出版日期:2021-03-20,
收稿日期:2020-12-24,
扫 描 看 全 文
陈文波,卢雪,金洁玚等.深度学习分析剪切波弹性图像评估肝纤维化[J].中山大学学报(医学科学版),2021,42(02):294-301.
CHEN Wen-bo,LU Xue,JIN Jie-yang,et al.Deep Learning Elastography for Assessing Liver Fibrosis[J].Journal of Sun Yat-sen University(Medical Sciences),2021,42(02):294-301.
目的
2
探讨深度学习分析剪切波弹性图像(DLE)评估肝纤维化的应用价值。
方法
2
筛选行组织学检查的545名慢性肝病患者,获取DLE、二维剪切波弹性成像(2D-SWE)、血清学、瞬时弹性成像(TE)资料,得出其评估肝纤维化病理分级的诊断效能,进行比较,并使用不同的验证组评估其稳定性。
结果
2
DLE评估肝纤维化病理分级F=4、F≥3、F≥2的受试者工作曲线下面积(AUC)分别为0.99、0.98、0.92,诊断效能明显优于其他手段,差异均具有统计学意义(
P
<0.05),2D-SWE表现出第二高的诊断效能,AUC分别为0.89、0.86、0.86,其他检测手段的诊断效能差别不大,最高只达0.81。而评估同一纤维化病理分级时,不同验证组DLE的诊断效能类似。
结论
2
DLE能准确评估肝纤维化,其诊断效能高于其他常用手段,且稳定性较好,有望成为无创评估肝纤维化的新手段。
Objective
2
To assess the diagnostic performance of deep learning elastography (DLE) for liver fibrosis.
Methods
2
Totally 545 chronic liver disease patients with liver biopsy were retrospectively enrolled. The results of DLE, two dimensional shear wave elastography (2D-SWE), serological markers and transient elastography (TE) were collected. Area under receiver operating curve (AUC) was calculated and inter-compared while evaluating liver fibrosis. Then we tested the diagnostic performance of the trained DLE model in different validation groups when evaluating the same liver fibrosis stage, respectively, to assess the stability of DLE.
Results
2
DLE showed statistically significantly (
P
<0.05) better results than any other methods. When evaluating F=4, F≥3 and F≥2, the AUC of DLE was 0.99, 0.98 and 0.92, respectively. 2D-SWE showed a second high diagnostic performance, while the AUCs were 0.89, 0.86 and 0.86, respectively. Little difference in diagnostic performance was showed among other methods, while the highest AUC was no more than 0.81. Besides, no statistical difference was showed among the three validation groups, while accessing the same liver fibrosis stage.
Conclusions
2
DLE can be used to accurately assess liver fibrosis, whose diagnostic performance is higher than that of 2D-SWE, serological markers and TE. Moreover, with good stability, DLE is expected to become a new method for noninvasive assessment of liver fibrosis.
深度学习剪切波弹性成像肝纤维化
deep learningshear wave elastographyliver fibrosis
姚光弼. 临床肝脏病学(2版)[M].上海:上海科学技术出版社, 2011: 230-413.
Yao GB.Clinical hepatology (second edition) [M]. Shanghai: Shanghai Science and Technology Press, 2011: 230-413.
Goodman ZD. Grading and staging systems for inflammation and fibrosis in chronic liver diseases[J]. J Hepatol, 2007, 47(4): 598-607.
Ofliver EAF. EASL 2017 clinical practice guidelines on the management of hepatitis B virus infection[J]. J Hepatol, 2017, 67(2): 370-398.
Kose S, Ersan G, Tatar B, et al. Evaluation of percutaneous liver biopsy complications in patients with chronic viral hepatitis[J]. Eurasian J Med, 2015, 47(3): 161-164.
Panel AHG. Hepatitis C guidance: AASLD-IDSA recommendations for testing, managing, and treating adults infected with hepatitis C virus[J]. Hepatology, 2015, 62(3): 932-954.
Barr RG. Elastography in clinical practice[J]. Radiol Clin North Am, 2014, 52(6): 1145-1162.
Bamber J, Cosgrove D, Dietrich CF, et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: Basic principles and technology[J]. Ultraschall Med, 2013, 34(2): 169-184.
RMS S, Liau J, Kaffas AE, et al. Ultrasound elastography: review of techniques and clinical applications[J]. Theranostics, 2017, 7(5): 1303-1329.
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446.
Meng LZD, Cao WCG, Zhang G. Liver fibrosis classification based on transfer learning and FCNet for ultrasound images[J]. IEEE Access, 2017, 5(99): 5804-5810.
Gatos I, Tsantis S, Spiliopoulos S, et al. A Machine-learning algorithm toward color analysis for chronic liver disease classification, employing ultrasound shear wave elastography[J]. Ultrasound Med Biol, 2017, 43(9): 1797-1810.
Liu X, Song JL, Wang SH, et al. Learning to diagnose cirrhosis with liver capsule guided ultrasound image classification[J]. Sensors (Basel), 2017, 17(1): 149.
Chen Y, Luo Y, Huang W, et al. Machine-learning-based classification of real-time tissue elastography for hepatic fibrosis in patients with chronic hepatitis B[J]. Comput Biol Med, 2017, 89: 18-23.
Wang K, Lu X, Zhou H, et al. Deep learning Radiomics of shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis in chronic hepatitis B: a prospective multicentre study[J]. Gut, 2019, 68(4): 729-741.
Zeng J, Liu GJ, Huang ZP, et al. Diagnostic accuracy of two-dimensional shear wave elastography for the non-invasive staging of hepatic fibrosis in chronic hepatitis B: a cohort study with internal validation[J]. Eur Radiol, 2014, 24(10): 2572-2581.
Wai CT, Greenson JK, Fontana RJ, et al. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C[J]. Hepatology, 2003, 38(2): 518-526.
Zheng J, Guo H, Zeng J, et al. Two-dimensional shear-wave elastography and conventional US: the optimal evaluation of liver fibrosis and cirrhosis[J]. Radiology, 2015, 275(1): 290-300.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构