1.中山大学附属第五医院放射科,广东 珠海519000
2.华南理工大学医学院附属广州市第一人民医院超声科,广东 广州510180
3.中国科学院深圳先进技术研究所劳特伯生物医学成像研究中心,广东 深圳518055
黄盘辉,在读硕士生,研究方向:超声释药及间充质干细胞治疗软骨缺损,E-mail: 937945247@qq.com
纸质出版日期:2021-03-20,
收稿日期:2021-01-12,
扫 描 看 全 文
黄盘辉,罗琼,严飞等.低强度聚焦超声触发PLGA阿霉素在细胞内空化增加乳腺癌细胞死亡[J].中山大学学报(医学科学版),2021,42(02):209-217.
HUANG Pan-hui,LUO Qiong,YAN Fei,et al.Low-intensity Focused Ultrasound -triggered Intracellular Cavitation of Doxorubicin- loaded PLGA Nanoparticles Enhances Breast Cancer Cell Death[J].Journal of Sun Yat-sen University(Medical Sciences),2021,42(02):209-217.
黄盘辉,罗琼,严飞等.低强度聚焦超声触发PLGA阿霉素在细胞内空化增加乳腺癌细胞死亡[J].中山大学学报(医学科学版),2021,42(02):209-217. DOI:
HUANG Pan-hui,LUO Qiong,YAN Fei,et al.Low-intensity Focused Ultrasound -triggered Intracellular Cavitation of Doxorubicin- loaded PLGA Nanoparticles Enhances Breast Cancer Cell Death[J].Journal of Sun Yat-sen University(Medical Sciences),2021,42(02):209-217. DOI:
目的
2
探讨低强度聚焦超声能否触发聚乳酸-羟基乙酸共聚物(PLGA)包裹阿霉素在细胞内的空化作用以增加4T1肿瘤细胞的死亡。
方法
2
采用双乳化溶剂蒸发法制备了负载阿霉素的聚乳酸-羟基乙酸共聚物(PLGA)纳米气泡。设立细胞内释药组,细胞外释药组,传统给药组,单独超声组和对照组。用流式细胞仪检测各组细胞的死亡情况,用细胞活力检测试剂盒(CCK8)检测各组的细胞增殖,细胞划痕检测各组的侵袭情况。
结果
2
超声组细胞核的红色荧光平均强度高于对照组,差异具有统计学意义(
t
=16.627,
P
<
0.001);聚乳酸-羟基乙酸共聚物(PLGA)包裹阿霉素在3、5、7、24和48 h的累计释药量超声组均高于对照组,差异都具有统计学意义(
P
<
0.001);细胞内释药组,细胞外释药组及传统给药组的细胞存活率,细胞增值率及划痕像素面积均低于对照组,且细胞内释药组显著低于其他组,差异具有统计学有意义(
P
<
0.001)。
结论
2
低强度聚焦超声通过细胞内空化触发的细胞内药物释放比低强度聚焦超声触发的细胞外药物释放及传统的给药方式更有效地增加4T1肿瘤细胞的死亡。
Objective
2
To investigate whether low-intensity focused ultrasound can trigger the intracellular cavitation of the doxorubicin-loaded polylactic acid-glycolic acid copolymer (PLGA) nanoparticles and then enhance the death of 4T1 breast cancer cells.
Methods
2
The doxorubicin-loaded PLGA nano-bubbles were prepared by double emulsification solvent evaporation method. 4T1 breast cancer cells were divided into intracellular drug release group, extracellular drug release group, traditional drug delivery group, ultrasound alone group and control group. In each group, flow cytometry, cell counting kit-8 (CCK8) and scratch assay were used to detect the cell death, proliferation and invasion, respectively.
Results
2
The average intensity of red fluorescence in the nuclei of the ultrasound group was higher than that of the control group and the difference was statistically significant (
t
=16.627,
P
<
0.001). The cumulative drug release of PLGA encapsulated doxorubicin at 3, 5, 7, 24 and 48 h in the ultrasound group were all higher than those in the control group and the differences were statistically significant (
P
<
0.001). The cell viability, cell proliferation and 24 h scratch pixel area in the intracellular drug release group, extracellular drug release group and traditional drug delivery group were all lower than those in the control group, with the results in the intracellular drug release group significantly lower than those in other groups. All the differences were statistically significant (
P
<
0.001).
Conclusions
2
The intracellular drug release triggered by low-intensity focused ultrasound through intracellular cavitation is more effective in enhancing the death of 4T1 tumor cells than the extracellular drug release triggered by low-intensity focused ultrasound and traditional drug delivery methods.
低强度聚焦超声细胞内空化乳腺肿瘤细胞死亡
low-intensity focused ultrasoundintracellular cavitationbreast tumorscell death
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019[J]. CA Cancer J Clin, 2019, 69(1): 7-34.
Li C, Yang XQ, Zhang MZ, et al. In vivo imaging-guided nanoplatform for tumor targeting delivery and combined chemo-, gene- and photothermal therapy[J]. Theranostics, 2018, 8(20): 5662-5675.
Chen HJ, Zhou XB, Wang AL, et al. Synthesis and biological characterization of novel rose bengal derivatives with improved amphiphilicity for sono-photodynamic therapy[J]. Eur J Med Chem, 2018, 145: 86-95.
Carvalho C, Santos RX, Cardoso S, et al. Doxorubicin: the good, the bad and the ugly effect[J]. Curr Med Chem, 2009, 16(25): 3267-3285.
Speth PA, van Hoesel QG, Haanen C. Clinical pharmacokinetics of doxorubicin[J]. Clin Pharmacokinet, 1988, 15(1): 15-31.
Iyer AK, Singh A, Ganta S, et al. Role of integrated cancer nanomedicine in overcoming drug resistance[J]. Adv Drug Deliv Rev, 2013, 65(13-14): 1784-1802.
Kanwal U, Irfan Bukhari N, Ovais M, et al. Advances in nano-delivery systems for doxorubicin: an updated insight[J]. J Drug Target, 2018, 26(4): 296-310.
Joshi VB, Geary SM, Salem AK. Biodegradable particles as vaccine delivery systems: size matters[J]. AAPS J, 2013, 15(1): 85-94.
Kang J, Wu F, Cai Y, et al. Development of Recombinant Human Growth Hormone (rhGH) sustained-release microspheres by a low temperature aqueous phase/aqueous phase emulsion method[J]. Eur J Pharm Sci, 2014, 62: 141-147.
Zhao H, Wu F, Cai Y, et al. Local antitumor effects of intratumoral delivery of rlL-2 loaded sustained-release dextran/PLGA-PLA core/shell microspheres[J].Int J Pharm, 2013, 450(1-2): 235-240.
Yuan W, Zhang Y, Wu F, et al. Preparation of protein-loaded sustained-release microspheres via 'solid-in-oil-in-hydrophilic oil-in-ethanol (S/O/hO/E)' emulsification[J]. Colloids Surf B Biointerfaces, 2010, 79(2): 326-333.
Danhier F, Ansorena E, Silva JM, et al. PLGA-based nanoparticles: an overview of biomedical applications[J]. J Control Release, 2012, 161(2): 505-522.
Lü JM, Wang X, Marin-Muller C, et al. Current advances in research and clinical applications of PLGA-based nanotechnology[J].Expert Rev Mol Diagn, 2009, 9(4): 325-341.
Zhu X, Braatz RD. A mechanistic model for drug release in PLGA biodegradable stent coatings coupled with polymer degradation and erosion[J]. J Biomed Mater Res A, 2015, 103(7): 2269-2279.
Makadia HK, Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier[J]. Polymers (Basel), 2011, 3(3): 1377-1397.
Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue[J]. Adv Drug Deliv Rev, 2003, 55(3): 329-347.
Figueiredo M, Esenaliev R. PLGA Nanoparticles for ultrasound-mediated gene delivery to solid tumors[J]. J Drug Deliv, 2012, 2012: 767839.
Chen H, Hwang JH. Ultrasound-targeted microbubble destruction for chemotherapeutic drug delivery to solid tumors[J]. J Ther Ultrasound, 2013, 1: 10.
Deng CX, Xu Q, Apfel RE, et al. Inertial cavitation produced by pulsed ultrasound in controlled host media[J]. J Acoust Soc Am, 1996,100(2 Pt 1): 1199-1208.
Doktycz SJ, Suslick KS. Interparticle collisions driven by ultrasound[J]. Science, 1990, 247(4946): 1067-1069.
Gambuteanu C, Alexe P. Comparison of thawing assisted by low-intensity ultrasound on technological properties of pork Longissimus dorsi muscle[J]. J Food Sci Technol, 2015, 52(4): 2130-2138.
Suslick KS, Doktycz SJ, Flint EB. On the origin of sonoluminescence and sonochemistry[J].Ultrasonics, 1990, 28(5): 280-290.
Frenkel V, Kimmel E, Iger Y. Ultrasound-induced cavitation damage to external epithelia of fish skin[J]. Ultrasound Med Biol, 1999, 25(8): 1295-1303.
Miller DL, Thomas RM. Ultrasound contrast agents nucleate inertial cavitation in vitro[J]. Ultrasound Med Biol, 1995, 21(8): 1059-1065.
Wood AK, Sehgal CM. A review of low-intensity ultrasound for cancer therapy[J]. Ultrasound Med Biol, 2015, 41(4): 905-928.
Juliano RL. Intracellular trafficking and endosomal release of oligonucleotides: What we know and what we don't[J]. Nucleic Acid Ther, 2018, 28(3): 166-177.
Moradi Kashkooli F, Soltani M, Souri M. Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dynamic targeting strategies[J]. J Control Release, 2020, 327: 316-349.
Raza A, Rasheed T, Nabeel F, et al. Endogenous and Exogenous Stimuli-Responsive Drug Delivery Systems for Programmed Site-Specific Release[J]. Molecules, 2019, 24(6):1117.
Chowdhury SM, Abou-Elkacem L, Lee T, et al. Ultrasound and microbubble mediated therapeutic delivery: Underlying mechanisms and future outlook[J]. J Control Release, 2020, 326: 75-90.
刘红梅,王宇,严飞. 一种超声介导细胞内空化作用进行基因转染的新型生物纳泡-细胞体系及其制备方法和应用[P]. 广东省:CN110791527A,2020-02-14.
Liu Hm, Wang Y, Yan F. A novel biological nanobubble-cell system for gene transfection through ultrasound-mediated intracellular cavitation and its preparation method and application[P].Guangdong Province: CN110791527A, 2020-02-14 .
Hernot S, Klibanov AL. Microbubbles in ultrasound-triggered drug and gene delivery[J]. Adv Drug Deliv Rev, 2008, 60(10): 1153-1166.
Pitt WG, Husseini GA, Staples BJ. Ultrasonic drug delivery--a general review[J]. Expert Opin Drug Deliv, 2004, 1(1): 37-56.
Pu C, Chang S, Sun J, et al. Ultrasound-mediated destruction of LHRHa-targeted and paclitaxel-loaded lipid microbubbles for the treatment of intraperitoneal ovarian cancer xenografts[J]. Mol Pharm, 2014, 11(1): 49-58.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构