1.中山大学公共卫生学院,广东 广州 510080
2.广东省营养与健康重点实验室,广东 广州 510080
3.广东省营养转化工程技术研究中心,广东 广州510080
4.中山大学公共卫生学院(深圳), 广东 深圳518000
5.广州市妇女儿童医疗中心耳鼻喉科,广东 广州 510623
武音帆,硕士在读,研究方向:膳食营养素防治过敏性气道炎症,E-mail: wuyf39@mail2.sysu.edu.cn
纸质出版日期:2020-07-15,
收稿日期:2020-04-12,
扫 描 看 全 文
武音帆,李琴,邹进超等.腹腔注射四氢姜黄素对卵清蛋白诱导过敏性哮喘小鼠的治疗作用[J].中山大学学报(医学科学版),2020,41(04):525-533.
WU Yin-fan,LI Qin,ZOU Jin-chao,et al.Therapeutic Effects of Intraperitoneal Injection of Tetrahydrocurcumin against Allergic Asthma in Ovalbumin-induced Murine Model[J].Journal of Sun Yat-sen University(Medical Sciences),2020,41(04):525-533.
武音帆,李琴,邹进超等.腹腔注射四氢姜黄素对卵清蛋白诱导过敏性哮喘小鼠的治疗作用[J].中山大学学报(医学科学版),2020,41(04):525-533. DOI:
WU Yin-fan,LI Qin,ZOU Jin-chao,et al.Therapeutic Effects of Intraperitoneal Injection of Tetrahydrocurcumin against Allergic Asthma in Ovalbumin-induced Murine Model[J].Journal of Sun Yat-sen University(Medical Sciences),2020,41(04):525-533. DOI:
目的
2
探讨腹腔注射四氢姜黄素(THC)对过敏性哮喘小鼠呼吸道症状和炎症反应的治疗效果。
方法
2
BALB/c小鼠随机分为4组,包括:正常对照组、卵清蛋白(OVA)诱导动物模型组、阳性对照组和THC治疗组。其中,阳性对照组和THC治疗组小鼠于实验第21 ~ 25天,分别经腹腔注射2.5 mg/kg 地塞米松(DEX)或20 mg/kg THC。记录小鼠激发前后体质量变化和挠鼻情况,实验结束后处死小鼠,采集肺组织和肺泡灌洗液(BALF)评估组织病理改变、检测T细胞亚型及相关细胞因子水平。
结果
2
哮喘小鼠经THC腹腔注射治疗后挠鼻频率降低(
P
<
0.05),两组均数之差为5.2,其95%置信区间(CI)为0.66~9.74;肺组织病理评分减少(
P
<
0.05),两组均数之差为1.6,其95%CI为0.32~2.88;杯状细胞增生引起的粘液分泌水平减轻(
P
<
0.0001),两组均数之差为9.56,其95%CI为5.05~14.07。此外
与OVA组相比,THC治疗组小鼠肺组织Th2、Th17细胞比例减少(
P
<
0.01,两组均数之差分别为1.492和2.15,其95%CI分别为0.50~2.49和0.72~3.58),BALF中白细胞介素(IL)IL-4、IL-5、IL-13和IL-17A的水平显著降低(
P
<
0.05),两组均数之差分别为5.45、4.13、5.17和2.44,其95%CI分别为1.95~8.94、1.08~7.19、0.80~9.54和-0.30~5.17。进一步比较发现THC与DEX治疗组间肺组织病理变化、Th17细胞以及IL-13和IL-17A因子水平差异无统计学意义(
P
>
0.05)。
结论
2
腹腔注射THC可以在短时间内有效缓解哮喘小鼠呼吸道症状和抑制炎症反应,且安全性较高,因此可能具有哮喘发作时替代性治疗手段的潜在价值。
Objective
2
To study the therapeutic effects of tetrahydrocurcumin (THC) via intraperitoneal (i.p.) injection on the respiratory symptoms and inflammatory responses in asthmatic mice.
Methods
2
BALB/c mice were randomly divided into 4 groups
including normal control group
ovalbumin (OVA)-induced model group
positive group and THC administration group. The latter two groups were treated with 2.5 mg/kg of dexamethasone (DEX) or 20 mg/kg of THC via i.p. injection from Day 21 to Day25. The weight changes and nasal symptoms were recorded before and after OVA challenge. The mice were sacrificed at the end of the experiment and the lung tissue and broncho-alveolar lavage fluid (BALF) were collected for assessment of histopathological alterations
Th cell subsets and related cytokine level.
Results
2
After THC treatment via i.p. injection
the asthmatic mice’s rubbing frequencies were reduced (
P
<
0.05) with a difference of 5.2 between the two means (95% CI = 0.66 to 9.74)
lungs’ pathological scores were reduced (
P
<
0.05) with a difference between the two means being 1.6 (95% CI = 0.32 to 2.88)
mucus production induced by hyperplasia of goblet cells was alleviated (
P
<
0.0001)with a difference between the two means being 9.56 (95% CI = 5.05 to 14.07). Besides
compared with OVA group
the percentages of Th2 and Th17 cells were reduced (
P
<
0.01) with a difference between the two means being 1.49 and 2.15 (95% CI = 0.50 to 2.49 and 0.72 to 3.58)
respectively. The levels of interleukin (IL)-4
IL-5
IL-13 and IL-17A in BALF were decreased (
P
<
0.05) with a difference between the two means being 5.45
4.13
5.17 and 2.44 (95% CI = 1.95 to 8.94
1.08 to 7.19
0.80 to 9.54 and -0.30 to 5.17)
respectively. The further comparison between THC and DEX groups showed no significant difference (
P
>
0.05) in the lung pathological change
Th17 cells
IL-13
and IL-17A levels.
Conclusions
2
It is concluded that i.p. injection of THC could effectively alleviate the respiratory symptoms and inhibit inflammatory reaction in asthmatic mice in short time with high safety. Therefore
i.p. injection of THC has the potential value to be the alternative therapeutic strategy for asthma.
四氢姜黄素过敏性哮喘治疗腹腔注射炎症反应
tetrahydrocurcuminallergic asthmatherapyintraperitoneal injectioninflammatory response
Hirose K, Iwata A, Tamachi T, et al. Allergic airway inflammation: key players beyond the Th2 cell pathway [J]. Immunol Rev, 2017, 278: 145-161.
Papi A, Brightling C, Pedersen SE, et al. Asthma [J]. Lancet, 2018, 391: 783-800.
Castillo JR, Peters SP, Busse WW. Asthma exacerbations: pathogenesis, prevention, and treatment [J]. J Allergy Clin Immunol Pract, 2017, 5: 918-927.
Yeo SH, Aggarwal B, Shantakumar S, et al. Efficacy and safety of inhaled corticosteroids relative to fluticasone propionate: a systematic review of randomized controlled trials in asthma [J]. Expert Rev Respir Med, 2017, 11: 763-778.
Allen DB. Inhaled corticosteroids and growth: Still an issue after all these years [J]. J Pediatr, 2015, 166: 463-469.
Turpeinen M, Pelkonen AS, Nikander K, et al. Bone mineral density in children treated with daily or periodical inhaled budesonide: the Helsinki Early Intervention Childhood Asthma study [J]. Pediatr Res, 2010, 68: 169-173.
Rosenberg K. Childhood asthma treatment can result in lower adult height: potential effect of inhaled glucocorticoids must be weighed against known benefits [J]. Am J Nurs, 2012, 112(12): 14.
Kelly HW, Sternberg AL, Lescher R, et al. Effect of inhaled glucocorticoids in childhood on adult height [J]. N Engl J Med, 2012, 367: 904-912.
Galvan CA, Guarderas JC. Practical considerations for dysphonia caused by inhaled corticosteroids [J]. Mayo Clin Proc, 2012, 87: 901-904.
Guilleminault L, Williams EJ, Scott HA, et al. Diet and asthma: Is it time to adapt our message?[J]. Nutrients, 2017, 9(11):1227.
Ma B, Wu Y, Chen B, et al. Cyanidin-3-O-beta-glucoside attenuates allergic airway inflammation by modulating the IL-4Ralpha-STAT6 signaling pathway in a murine asthma model [J]. Int Immunopharmacol, 2019, 69: 1-10.
Yang X, Lv JN, Li H, et al. Curcumin reduces lung inflammation via Wnt/beta-catenin signaling in mouse model of asthma [J]. J Asthma, 2017, 54: 335-340.
Manarin G, Anderson D, Silva JME, et al. Curcuma longa L. ameliorates asthma control in children and adolescents: A randomized, double-blind, controlled trial [J]. J Ethnopharmacol, 2019, 238: 111882.
Andre DM, Calixto MC, Sollon C, et al. Therapy with resveratrol attenuates obesity-associated allergic airway inflammation in mice [J]. Int Immunopharmacol, 2016, 38: 298-305.
Stevens JF and Maier CS. The chemistry of gut microbial metabolism of polyphenols [J]. Phytochem Rev, 2016, 15: 425-444.
Burapan S, Kim M, Han J. Curcuminoid demethylation as an alternative metabolism by human intestinal microbiota [J]. J Agric Food Chem, 2017, 65: 3306-3311.
Chen B, Qu S, Li M, et al. Effects of 1,25-dihydroxyvitamin D3 in an ovalbumin-induced allergic rhinitis model [J]. Int Immunopharmacol, 2017, 47: 182-189.
Cho SW, Kim JH, Choi JH, et al. Preventive and therapeutic effects of vitamin D in a mouse model of allergic asthma [J]. Asian Pac J Allergy Immunol, 2019, 37: 130-137.
Gao Y, Zhuang Z, Gao S, et al. Tetrahydrocurcumin reduces oxidative stress-induced apoptosis via the mitochondrial apoptotic pathway by modulating autophagy in rats after traumatic brain injury [J]. Am J Transl Res, 2017, 9: 887-899.
Song KI, Park JY, Lee S, et al. Protective effect of tetrahydrocurcumin against cisplatin-induced renal damage: in vitro and in vivo studies [J]. Planta Medica, 2015, 81: 286-291.
Sangartit W, Pakdeechote P, Kukongviriyapan V, et al. Tetrahydrocurcumin in combination with deferiprone attenuates hypertension, vascular dysfunction, baroreflex dysfunction, and oxidative stress in iron-overloaded mice [J]. Vascul Pharmacol, 2016, 87: 199-208.
Wu JC, Tsai ML, Lai CS, et al. Chemopreventative effects of tetrahydrocurcumin on human diseases [J]. Food Funct, 2014, 5: 12-17.
Pan MH, Chen JW, Kong ZL, et al. Attenuation by tetrahydrocurcumin of adiposity and hepatic steatosis in mice with high-fat-diet-induced obesity [J]. J Agric Food Chem, 2018, 66: 12685-12695.
Chen BL, Chen YQ, Ma BH, et al. Tetrahydrocurcumin, a major metabolite of curcumin, ameliorates allergic airway inflammation by attenuating Th2 response and suppressing the IL-4Ralpha-Jak1-STAT6 and Jagged1/Jagged2 -Notch1/Notch2 pathways in asthmatic mice [J]. Clin Exp Allergy, 2018, 48: 1494-1508.
Chua HH, Chou HC, Tung YL, et al. Intestinal dysbiosis featuring abundance of ruminococcus gnavus associates with allergic diseases in infants [J]. Gastroenterology, 2018, 154:154-167.
Robinson D, Humbert M, Buhl R, et al. Revisiting type 2-high and type 2-low airway inflammation in asthma: current knowledge and therapeutic implications [J]. Clin Exp Allergy, 2017, 47: 161-175.
Choy DF, Hart KM, Borthwick LA, et al. TH2 and TH17 inflammatory pathways are reciprocally regulated in asthma [J]. Sci Transl Med, 2015, 7: 301ra129.
Zhang ZB, Luo DD, Xie JH, et al. Curcumin′s metabolites, tetrahydrocurcumin and octahydrocurcumin, possess superior anti-inflammatory effects in vivo through suppression of tak1-nf-κb pathway [J]. Front Pharmacol, 2018,9: 1181.
Kirkland SW, Cross E, Campbell S, et al. Intramuscular versus oral corticosteroids to reduce relapses following discharge from the emergency department for acute asthma [J]. Cochrane Database Syst Rev, 2018, 6: CD012629.
Stenson EK, Tchou MJ, Wheeler DS. Management of acute asthma exacerbations [J]. Curr Opin Pediatr, 2017, 29(3): 305–310.
Suau SJ, DeBlieux PM. Management of acute exacerbation of asthma and chronic obstructive pulmonary disease in the emergency department [J]. Emerg Med Clin North Am, 2016, 34: 15-37.
Gao YY, Zhuang Z, Gao ST, et al. Tetrahydrocurcumin reduces oxidative stress-induced apoptosis via the mitochondrial apoptotic pathway by modulating autophagy in rats after traumatic brain injury [J]. Am J Transl Res, 2017, 9: 887-899.
Lin B, Yu H, Lin Y, et al. Suppression of GRASP65 phosphorylation by tetrahydrocurcumin protects against cerebral ischemia/reperfusion injury via ERK signaling [J]. Mol Med Rep, 2016, 14: 4775-4780.
Majeed M, Natarajan S, Pandey A, et al. Subchronic and reproductive/developmental toxicity studies of tetrahydrocurcumin in rats [J]. Toxicol Res, 2019, 35: 65-74.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构