1.中山大学医学院,广东 广州 510080
2.中山大学孙逸仙纪念医院外科教研室,广东 广州 510120
3.中山大学中山医学院解剖教研室,广东 广州 510080
4.中山大学孙逸仙纪念医院麻醉科,广东 广州 510120
谢毓峰,研究方向:神经免疫,E-mail: xieyf8@mail2.sysu.edu.cn
祁方昉,共同第一作者,博士,研究方向:外周免疫与中枢神经系统的交互作用,E-mail:qiff@mail2.sysu.edu.cn;通信作者:王飞,副主任医师,研究方向:细胞凋亡机制研究,E-mail: 1995wangfei@sina.com
纸质出版日期:2021-03-20,
收稿日期:2020-09-16,
扫 描 看 全 文
谢毓峰,祁方昉,王清波等.回输卡介苗激活的T淋巴细胞重塑裸鼠硬脑膜淋巴管结构[J].中山大学学报(医学科学版),2021,42(02):171-176.
XIE Yu-feng,QI Fang-fang,WANG Qing-bo,et al.T-Cell Activated by BCG Reinfusion Remodels the Structure of Dural Meningeal Lymphatic Vessels in Nude Mice[J].Journal of Sun Yat-sen University(Medical Sciences),2021,42(02):171-176.
谢毓峰,祁方昉,王清波等.回输卡介苗激活的T淋巴细胞重塑裸鼠硬脑膜淋巴管结构[J].中山大学学报(医学科学版),2021,42(02):171-176. DOI:
XIE Yu-feng,QI Fang-fang,WANG Qing-bo,et al.T-Cell Activated by BCG Reinfusion Remodels the Structure of Dural Meningeal Lymphatic Vessels in Nude Mice[J].Journal of Sun Yat-sen University(Medical Sciences),2021,42(02):171-176. DOI:
目的
2
探讨外周免疫对脑膜淋巴管结构的影响。
方法
2
通过尾静脉给Nude裸鼠回输卡介苗激活的CD3
+
的T淋巴细胞,建立免疫重构模型小鼠;回输等体积的PBS作为对照组;BALB/c小鼠作为野生型组。采用免疫荧光染色法检测小鼠硬脑膜lyve-1
+
的淋巴管内皮细胞连续程度对淋巴管结构进行评估,检测硬脑膜淋巴管内CD11b
+
细胞的数量来反映免疫细胞迁入淋巴管的程度。
结果
2
免疫荧光染色的结果显示:与BALB/c小鼠相比,裸鼠背侧淋巴管内CD11b
+
细胞数量降低(
P
<0.05)。回输T淋巴细胞后裸鼠的脑膜淋巴管较对照组有明显的增殖。裸鼠颈部淋巴结副皮质区淋巴小结增生,皮质区无明显差异。
结论
2
外周免疫调节可改善脑膜淋巴管的结构及功能。
Objective
2
To investigate the effect of peripheral immunity on the structure of meningeal lymphatics.
Methods
2
BCG activated CD3
+
T cells were injected back into nude mice through tail vein to establish the immune reconstruction model group, while the control group was set up by transfusion of the equal volume of PBS. BALB/c mice were treated as wild-type group. Immunofluorescence staining was used to detect the degree of continuity of Lyve-1 positive lymphoid epithelium in the dural mater of mice to evaluate the structure of lymphatic vessels, and the number of CD11b
+
cells in the lymphatic vessels was detected to reflect the degree of migration of immune cells into the dural lymphatic vessels.
Results
2
The immunofluorescence staining results showed that compared with BALB/c mice, the number of CD11b
+
cells in the dorsal lymphatic vessels of nude mice decreased (
P
<0.05). Compared with the control group, the dural meningeal lymphatic vessels of nude mice were significantly proliferated after T cell transfusion. There was no significant difference between BALB/c mice and nude mice in the cortical areas of cervical lymph nodes, while lymphoid nodules proliferated in the paracortical areas in nude mice.
Conclusion
2
Peripheral immune regulation can improve the structure and function of meningeal lymphatic vessels.
免疫缺陷脑膜淋巴管T细胞回输颈部淋巴结
immunodeficiencymeningeal lymphaticsT cell retransfusioncervical lymph node
Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β[J]. Sci Transl Med, 2012, 4(147): 147ra111.
Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels [J]. Nature, 2015, 523(7560): 337-341.
Raper D, Louveau A, Kipnis J. How do meningeal lymphatic vessels drain the CNS?[J]. Trends Neurosci, 2016, 39(9): 581-586.
Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders[J]. Lancet Neurol, 2018, 17(11): 1016-1024.
Da Mesquita S, Louveau A, Vaccari A, et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer's disease[J]. Nature, 2018, 560(7717): 185-191.
Antila S, Karaman S, Nurmi H, et al. Development and plasticity of meningeal lymphatic vessels[J]. J Exp Med, 2017, 214(12): 3645-3667.
Ahn JH, Cho H, Kim JH, et al. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid[J]. Nature, 2019, 572: 62-66.
Louveau A, Herz J, Alme MN, et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature[J]. Nat Neurosci, 2018, 21(10): 1380-1391.
Louveau A, Da Mesquita S, Kipnis J. Lymphatics in neurological disorders: A neuro-lympho-vascular component of multiple sclerosis and alzheimer’s disease?[J]. Neuron, 2016, 91(5): 957-973.
Ma Q, Ineichen BV, Detmar M, et al. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice[J]. Nat Commun, 2017, 8(1): 1434.
Petrova TV, Koh GY. Organ-specific lymphatic vasculature: From development to pathophysiology[J]. J Exp Med, 2018, 215(1): 35-49.
Song D, Qi FF, Liu SS, et al. The adoptive transfer of BCG-induced T lymphocytes contributes to hippocampal cell proliferation and tempers anxiety-like behavior in immune deficient mice[J]. PLoS One, 2020, 15(4): e0225874.
Qi FF, Yang JH, Xia YC, et al. A(H1N1) vaccination recruits T lymphocytes to the choroid plexus for the promotion of hippocampal neurogenesis and working memory in pregnant mice[J]. Brain Behav Immun, 2016, 53: 72-83.
Zuo Z, Qi F, Yang J, et al. Immunization with Bacillus Calmette-Guérin (BCG) alleviates neuroinflammation and cognitive deficits in APP/PS1 mice via the recruitment of inflammation-resolving monocytes to the brain[J]. Neurobiol Dis, 2017, 101: 27-39.
Qi F, Zuo Z, Yang J, et al. Combined effect of BCG vaccination and enriched environment promote neurogenesis and spatial cognition via a shift in meningeal macrophage M2 polarization[J]. J Neuroinflammation, 2017, 14(1): 32.
Hsu M, Rayasam A, Kijak JA, et al. Neuroinflammation-induced lymphangiogenesis near the cribriform plate contributes to drainage of CNS-derived antigens and immune cells[J]. Nat Commun, 2019, 10(1): 229.
Louveau A, Herz J, Alme MN, et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature[J]. Nat Neurosci, 2018, 21(10): 1380-1391.
Hu D, Nicholls PK, Claus M, et al. Immunofluorescence characterization of innervation and nerve-immune cell interactions in mouse lymph nodes[J]. Eur J Histochem, 2019, 63(4): 3059.
0
浏览量
1
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构