1.中山大学附属第三医院皮肤性病科,广东 广州 510630
2.龙岗区人民医院耳鼻咽喉科,广东 深圳 518172
邓文佳,硕士生,研究方向:雄激素源性脱发的发病机制及治疗,E-mail:443608344@qq.com
纸质出版日期:2021-03-20,
收稿日期:2019-11-03,
扫 描 看 全 文
邓文佳,邓长健,韩乐等.双氢睾酮体外培养人毛囊中差异表达的miR-133b对人毛乳头细胞的增殖及诱导能力的影响[J].中山大学学报(医学科学版),2021,42(02):202-208.
DENG Wen-jia,DENG Chang-jian,HAN Le,et al.Differential Expression of miR-133b in Human Hair Follicles Treated with DHT in Vitro and Its Functional Analysis in Human Dermal Papille Cells[J].Journal of Sun Yat-sen University(Medical Sciences),2021,42(02):202-208.
邓文佳,邓长健,韩乐等.双氢睾酮体外培养人毛囊中差异表达的miR-133b对人毛乳头细胞的增殖及诱导能力的影响[J].中山大学学报(医学科学版),2021,42(02):202-208. DOI:
DENG Wen-jia,DENG Chang-jian,HAN Le,et al.Differential Expression of miR-133b in Human Hair Follicles Treated with DHT in Vitro and Its Functional Analysis in Human Dermal Papille Cells[J].Journal of Sun Yat-sen University(Medical Sciences),2021,42(02):202-208. DOI:
目的
2
探究不同浓度双氢睾酮(DHT)对毛囊生长和毛囊细胞增殖的影响及其与miR-133b表达的关系,然后进一步探究miR-133b对毛乳头细胞的增殖和诱导能力的影响。
方法
2
体外显微分离人毛囊,选取生长期的毛囊进行培养,显微镜下每日测量并拍摄不同浓度的DHT处理组(10
-8
、10
-7
、10
-6
和10
-5
mol/L)和对照组各组毛囊的生长长度,免疫荧光检测各组毛母质细胞Ki-67表达量评估毛囊增殖能力,qRT-PCR检测各组毛囊中miR-133b的表达量。通过Lipofectamine 2000转染miR-133b mimics及miR-133b NC至人毛乳头细胞中,CCK-8检测各组人毛乳头细胞增殖能力,qRT-PCR及Western Blot检测毛乳头细胞诱导能力指标Versican、ALP、β-catenin的mRNA及蛋白水平的相对表达量。
结果
2
与对照组相比,DHT 10
-5
mol/L实验组对毛囊的生长的抑制作用有统计学意义(
P
<
0.05),DHT 10
-5
mol/L实验组进入退行期的时间提前;其他组生长长度与对照组相比无统计学意义。免疫荧光及qRT-PCR显示,与对照组相比,DHT 10
-5
mol/L实验组毛母质细胞中Ki-67阳性细胞较少且毛囊中miR-133b的相对表达量明显升高,相当于对照组的(3.17±0.26)倍(
P
<
0.01)。CCK-8显示,miR-133b mimics组OD450低于miR-133b NC组(
P
<
0.05);qRT-PCR显示,在mRNA水平,miR-133b mimics组Versican、ALP、β-catenin的相对表达量均低于miR-133b NC组(
P
<
0.001、
P
<
0.01和
P
<
0.01)。Western blot显示,在蛋白水平,miR-133b mimics组Versican、ALP、β-catenin的相对表达量同样均低于miR-133b NC组(
P
<
0.01、
P
<
0.001和
P
<
0.01)。
结论
2
高浓度DHT可能通过调控miR-133b的表达抑制人毛乳头细胞的增殖活性及诱导能力,最终抑制人毛囊的生长及增殖。
Objective
2
To explore the effects of different concentrations of 5α-dihydrotestosterone (DHT) on growth and proliferation of human hair follicles (HFs) and their relationship with miR-133b expression, then further explore the role of miR-133b in the proliferation and inducibility of human dermal papille cells.
Methods
2
HFs were isolated by microdissection, then the anagen isolated HFs were cultured and divided into different concentrations of DHT treatment groups (10
-8
mol/L, 10
-7
mol/L, 10
-6
mol/L, 10
-5
mol/L) and the blank control group. The HF growth and morphology were measured and evaluated. The expression of Ki-67 in hair matrix cells and miR-133b were detected by immunofluorescence assay and qRT-PCR respectively. Lipofectamine 2000 was used to transfect miR-133b mimics and miR-133b NC into human dermal papilla cells. CCK-8 was used to assess the proliferation ability of human dermal papilla cells. qRT-PCR and Western Blot were performed to evaluate respectively the mRNA and protein levels of the markers associated with inductive ability of dermal papilla cells, such as Versican, ALP and β-catenin.
Results
2
Compared with the control group, no other treatment groups but the DHT 10
-5
mol/L group showed statistically significant inhibitory effect on HF growth (
P
<
0.05). The catagen in the DHT 10
-5
mol/L group appeared earlier than that in the control group and there was no statistically significant difference in HF growth between other treatment groups and the control group. The DHT 10
-5
mol/L group showed lower percentage of Ki-67-positive cells in hair matrix cells and significantly increased relative expression of miR-133b in HFs, 3.17±0.26 times more than that in the control group (
P
<
0.01). CCK-8 assay revealed that the OD450 value in the miR-133b mimics group was lower than that in the miR-133b NC group (
P
<
0.05). qRT-PCR revealed that the mRNA expression levels of Versican, ALP, and β-catenin in the miR-133b mimics group were all lower than those in the miR-133b NC group (
P
<
0.001,
P
<
0.01,
P
<
0.01). Western Blot revealed that the protein expression levels of Versican, ALP, and β-catenin in the miR-133b mimics group were also lower than those in the miR-133b NC group (
P
<
0.01,
P
<
0.001,
P
<
0.01).
Conclusions
2
High concentrations of DHT may inhibit the growth and proliferation of HFs via regulating the expression of miR-133b, thus affect the proliferation and inducibility of human dermal papilla cells.
miR-133b双氢睾酮毛囊毛乳头细胞
miR-133b5α-dihydrotestosteronehair folliclesdermal papille cells
Zhang M, Zhang N. Quality of life assessment in patients with alopecia areata and androgenetic alopecia in the People's Republic of China[J]. Patient Prefer Adherence, 2017, 11: 151-155.
Jang WS, Son IP, Yeo IK, et al. The annual changes of clinical manifestation of androgenetic alopecia clinic in korean males and females:a outpatient-based study[J]. Ann Dermatol, 2013, 25(2): 181-188.
Sinclair R, Torkamani N, Jones L. Androgenetic alopecia: new insights into the pathogenesis and mechanism of hair loss[J]. F1000Res, 2015, 4(F1000 Faculty Rev): 585.
Sinclair R. Androgenetic alopecia. Modelling progression and regrowth[J]. Exp Dermatol, 2016, 25(6): 424-425.
Plowman JE, Harland DP. The follicle cycle in brief[J]. Adv Exp Med Biol, 2018, 1054: 15-17.
Cotsarelis G. Epithelial stem cells: a folliculocentric view[J]. J Invest Dermatol, 2006, 126(7): 1459-1468.
Sennett R, Rendl M. Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling[J]. Semin Cell Dev Biol, 2012, 23(8): 917-927.
Stenn KS, Paus R. Controls of hair follicle cycling[J]. Physiol Rev, 2001, 81(1): 449-494.
Winiarska A, Mandt N, Kamp H, et al. Effect of 5alpha-dihydrotestosterone and testosterone on apoptosis in human dermal papilla cells[J]. Skin Pharmacol Physiol, 2006, 19(6): 311-321.
Ha TY. MicroRNAs in human diseases: from cancer to cardiovascular disease[J]. Immune Netw, 2011, 11(3): 135-154.
Mitchelson KR, Qin WY. Roles of the canonical myomiRs miR-1, -133 and -206 in cell development and disease[J]. World J Biol Chem, 2015, 6(3): 162-208.
Li D, Xia L, Chen M, et al. miR-133b, a particular member of myomiRs, coming into playing its unique pathological role in human cancer[J]. Oncotarget, 2017, 8(30): 50193-50208.
Huang B, Jiang XC, Zhang TY, et al. Peptide modified mesenchymal stem cells as targeting delivery system transfected with miR-133b for the treatment of cerebral ischemia[J]. Int J Pharm, 2017, 531(1): 90-100.
Mo W, Zhang J, Li X, et al. Identification of novel AR-targeted microRNAs mediating androgen signalling through critical pathways to regulate cell viability in prostate cancer[J]. PLoS One, 2013, 8(2): e56592.
Ying S, Jianjun H, Xue Y, et al. MicroRNA-133b inhibits cell proliferation and invasion in osteosarcoma by targeting Sirt1[J]. Oncol Res, 2017, 25(9): 1421-1430.
Tian Z, Jiang H, Liu Y, et al. MicroRNA-133b inhibits hepatocellular carcinoma cell progression by targeting Sirt1[J]. Exp Cell Res, 2016, 343(2): 135-147.
Chen X, Liu B, Li Y, et al. Dihydrotestosterone regulates hair growth through the Wnt/beta-Catenin Pathway in C57BL/6 mice and in vitro organ culture[J]. Front Pharmacol, 2019, 10: 1528.
Kloepper JE, Sugawara K, Al-Nuaimi Y, et al. Methods in hair research: how to objectively distinguish between anagen and catagen in human hair follicle organ culture[J]. Exp Dermatol, 2010, 19(3): 305-312.
Lee MJ, Cha HJ, Lim KM, et al. Analysis of the microRNA expression profile of normal human dermal papilla cells treated with 5alpha-dihydrotestosterone[J]. Mol Med Rep, 2015, 12(1): 1205-1212.
Groeger G, Quiney C, Cotter TG. Hydrogen peroxide as a cell-survival signaling molecule[J]. Antioxid Redox Signal, 2009, 11(11): 2655-2671.
Wang H, Han X, Wittchen ES, et al. TNF-alpha mediates choroidal neovascularization by upregulating VEGF expression in RPE through ROS-dependent beta-catenin activation[J]. Mol Vis, 2016, 22: 116-128.
Chen R, Miao Y, Hu Z. Dynamic Nestin expression during hair follicle maturation and the normal hair cycle[J]. Mol Med Rep, 2019, 19(1): 549-554.
Ahmed MI, Alam M, Emelianov VU, et al. MicrorNA-214 controls skin and hair follicle development by modulating the activity of the Wnt pathway[J]. J Cell Biol, 2014, 207(4): 549-567.
Zhang L, Stokes N, Polak L, et al. Specific microRNAs are preferentially expressed by skin stem cells to balance self-renewal and early lineage commitment[J]. Cell Stem Cell, 2011, 8(3): 294-308.
Wang D, Zhang Z, O'Loughlin E, et al. MicroRNA-205 controls neonatal expansion of skin stem cells by modulating the PI(3)K pathway[J]. Nat Cell Biol, 2013, 15(10): 1153-1163.
Yang Y, Li Y, Wang Y, et al. Versican gene: regulation by the beta-catenin signaling pathway plays a significant role in dermal papilla cell aggregative growth[J]. J Dermatol Sci, 2012, 68(3): 157-163.
Yang CC, Cotsarelis G. Review of hair follicle dermal cells[J]. J Dermatol Sci, 2010, 57(1): 2-11.
Iida M, Ihara S, Matsuzaki T. Hair cycle-dependent changes of alkaline phosphatase activity in the mesenchyme and epithelium in mouse vibrissal follicles[J]. Dev Growth Differ, 2007, 49(3): 185-195.
Enshell-Seijffers D, Lindon C, Kashiwagi M, et al. beta-catenin activity in the dermal papilla regulates morphogenesis and regeneration of hair[J]. Dev Cell, 2010, 18(4): 633-642.
0
浏览量
0
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构