中山大学附属第七医院麻醉科,广东 深圳 518107
庞昌季,硕士生,研究方向:围术期器官功能损伤,E-mail:1071286543@qq.com
纸质出版日期:2021-07-20,
收稿日期:2021-03-17,
扫 描 看 全 文
庞昌季,谭芳,郑磊等.糖尿病合并脓毒症小鼠肠损伤特点[J].中山大学学报(医学科学版),2021,42(04):513-520.
PANG Chang-ji,TAN Fang,ZHENG Lei,et al.Characteristics of Intestinal Injury in Diabetic Mice with Sepsis[J].Journal of Sun Yat-sen University(Medical Sciences),2021,42(04):513-520.
庞昌季,谭芳,郑磊等.糖尿病合并脓毒症小鼠肠损伤特点[J].中山大学学报(医学科学版),2021,42(04):513-520. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2021.0405.
PANG Chang-ji,TAN Fang,ZHENG Lei,et al.Characteristics of Intestinal Injury in Diabetic Mice with Sepsis[J].Journal of Sun Yat-sen University(Medical Sciences),2021,42(04):513-520. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2021.0405.
目的
2
观察糖尿病合并脓毒症小鼠肠损伤特点,并初步探讨M1巨噬细胞在糖尿病合并脓毒症肠损伤中的作用。
方法
2
BKS-DB(
Lepr ko/ko
)和BKS-DB(
Lepr wt/wt
)雄性小鼠随机分为非糖尿病鼠假手术组(NDMS组)、非糖尿病鼠脓毒症模型组(NDMCLP组)、糖尿病鼠假手术组(DMS组)、糖尿病鼠脓毒症模型组(DMCLP组)4组,每组6只;细胞实验分为对照组(Sham组)、高糖组(HG组)、脂多糖组(LPS组)、高糖+脂多糖组(HG+LPS组)4组。采用盲肠结扎穿孔术(CLP)构建糖尿病合并脓毒症小鼠模型,观察小鼠肠组织病理损伤情况、肠组织 Occludin 和ZO-1蛋白表达量变化、巨噬细胞极化特征及炎症因子基因表达情况;采用高糖与LPS共刺激巨噬细胞,流式细胞学技术检测体外巨噬细胞极化变化,qPCR技术检测炎症因子基因表达量。
结果
2
CLP后12 h,DMCLP组小鼠肠组织病理损伤Chiu's评分显著升高,肠组织Occludin、ZO-1蛋白表达量降低(
P
<0.05);DMCLP组小鼠肠组织巨噬细胞数量明显增加,M1标志物iNOS、CRR7 mRNA表达显著升高,炎症因子TNF-α、IL-1β和IL-6 mRNA表达明显上升(
P
<0.05)。体外细胞实验中,HG+LPS组M1巨噬细胞标志物CD86及炎症因子TNF-α、IL-1β和IL-6 mRNA表达显著升高(
P
<0.05)。
结论
2
糖尿病合并脓毒症小鼠肠损伤较非糖尿病脓毒症小鼠更为严重,可能与高糖时巨噬细胞更易在LPS的作用下向M1极化有关,促进炎症因子表达有关。
Objective
2
The present study was designed to explore the role of high glucose and macrophage polarization and their potential relation to septic intestinal injury.
Methods
2
BKS-DB (
Lepr ko/ko
) and BKS-DB (
Lepr wt/wt
) male mice were randomly divided into 4 groups (
n
=6), which include non-diabetic mice sham group (NDMS group), non-diabetic mice CLP group (NDMCLP group), diabetic mice sham group (DMS group), diabetic mice CLP group (DMCLP group). The cell experiment was divided into four groups: control group (Sham group), high glucose group (HG group), lipopolysaccharide group (LPS group), high glucose and lipopolysaccharide group (HG+LPS group). Animal and cell models were respectively established by cecal ligation and puncture (CLP) and co-stimulation of high glucose and LPS. The pathological injury and Occludin and ZO-1 protein expression of intestinal tissue were detected. The distribution and polarization characteristics of macrophages were detected by immunofluorescence, real-time quantitative PCR (RT-PCR) and Western blot.
Results
2
Twelve hours after CLP, the intestinal pathological scores significantly increased in the DMCLP group (
P
<
0.05). The results of western blot and RT-PCR showed the expressions of intestinal Occludin and ZO-1 protein were decreased in the DMCLP group, while the expression of inflammatory cytokines TNF-α, IL-1β and IL-6 mRNA was increased significantly (
P
<
0.05). The results of immunofluorescence and RT-PCR showed the number of macrophages in the intestinal tissue of mice in the DMCLP group increased significantly, and the expression of M1 markers iNOS and CRR7 mRNA increased significantly (
P
<
0.05). In further cell experiment, the expressions of M1 macrophages marker CD86 and inflammatory cytokine TNF-α, IL-1β and IL-6 mRNA were significantly increased in the HG+LPS group.
Conclusion
2
High glucose might aggravate intestinal injury by promoting LPS-induced macrophage polarization to M1 type.
糖尿病脓毒症肠损伤巨噬细胞极化
diabetessepsisintestinal injurymacrophage polarization
Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications[J]. Nat Rev Endocrinol, 2018,14(2): 88-98.
Standl E, Khunti K, Hansen TB, et al. The global epidemics of diabetes in the 21st century: Current situation and perspectives[J]. Eur J Prev Cardiol, 2019,26(2_suppl): 7-14.
Zimmet P, Alberti KG, Magliano DJ, et al. Diabetes mellitus statistics on prevalence and mortality: facts and fallacies[J]. Nat Rev Endocrinol, 2016,12(10): 616-622.
Ma RCW. Epidemiology of diabetes and diabetic complications in China[J]. Diabetologia, 2018,61(6): 1249-1260.
Frydrych LM, Fattahi F, He K, et al. Diabetes and sepsis: Risk, recurrence, and ruination[J]. Front Endocrinol (Lausanne), 2017,8: 271.
Fleischmann C, Scherag A, Adhikari NK, et al. Assessment of global incidence and mortality of hospital-treated sepsis. current estimates and limitations[J]. Am J Respir Crit Care Med, 2016,193(3): 259-272.
De Miguel-Yanes JM, Jiménez-García R, Hernández-Barrera V, et al. Infective endocarditis according to type 2 diabetes mellitus status: an observational study in Spain, 2001-2015[J]. Cardiovasc Diabetol, 2019,18(1): 161.
Abe T, Ogura H, Shiraishi A, et al. Characteristics, management, and in-hospital mortality among patients with severe sepsis in intensive care units in Japan: the FORECAST study [J]. Crit Care, 2018, 22(1): 322.
Kamath SU, Patil B, Shelke U, et al. Comparing diabetic and nondiabetic emphysematous pyelonephritis and evaluating predictors of mortality[J]. Saudi J Kidney Dis Transpl, 2019,30(6): 1266-1275.
Fay KT, Ford ML, Coopersmith CM. The intestinal microenvironment in sepsis[J]. Biochim Biophys Acta Mol Basis Dis, 2017,1863(10 Pt B): 2574-2583.
Subramanian S, Geng H, Tan XD. Cell death of intestinal epithelial cells in intestinal diseases[J]. Sheng Li Xue Bao, 2020,72(3): 308-324.
Xuan W, Qu Q, Zheng B, et al. The chemotaxis of M1 and M2 macrophages is regulated by different chemokines[J]. J Leukoc Biol, 2015,97(1): 61-69.
Locati M, Curtale G, Mantovani A. Diversity, mechanisms, and significance of macrophage plasticity[J]. Annu Rev Pathol, 2020,15: 123-147.
Liu WF, Wen SH, Zhan JH, et al. Treatment with recombinant trichinella spiralis cathepsin b-like protein ameliorates intestinal ischemia/reperfusion injury in mice by promoting a switch from M1 to M2 macrophages[J]. J Immunol, 2015,195(1): 317-328.
Chong CR, Clarke K, Levelt E. Metabolic remodeling in diabetic cardiomyopathy[J]. Cardiovasc Res, 2017,113(4): 422-430.
Xue M, Liu Y, Xu H, et al. Propolis modulates the gut microbiota and improves the intestinal mucosal barrier function in diabetic rats[J]. Biomed Pharmacother, 2019,118: 109393.
Pecoits-Filho R, Abensur H, Betônico CC, et al. Interactions between kidney disease and diabetes: dangerous liaisons[J]. Diabetol Metab Syndr, 2016,8: 50.
Frydrych LM, Bian G, O'lone DE, et al. Obesity and type 2 diabetes mellitus drive immune dysfunction, infection development, and sepsis mortality[J]. J Leukoc Biol, 2018,104(3): 525-534.
Gawdi R, Emmady PD. Physiology, blood brain barrier[EB/OL]. (2020-12-19) [2021-06-07]. https://www.ncbi.nlm.nih.gov/books/NBK557721/https://www.ncbi.nlm.nih.gov/books/NBK557721/
Reinhold AK, Rittner HL. Characteristics of the nerve barrier and the blood dorsal root ganglion barrier in health and disease[J]. Exp Neurol, 2020,327: 113244.
Yoseph BP, Klingensmith NJ, Liang Z, et al. Mechanisms of intestinal barrier dysfunction in sepsis[J]. Shock, 2016,46(1): 52-59.
Wu XX, Huang XL, Chen RR, et al. Paeoniflorin prevents intestinal barrier disruption and inhibits lipopolysaccharide (LPS)-induced inflammation in caco-2 cell monolayers[J]. Inflammation, 2019,42(6): 2215-2225.
Zhong HJ, Yuan Y, Xie WR, et al. Type 2 diabetes mellitus is associated with more serious small intestinal mucosal injuries[J]. PLoS One, 2016,11(9): e0162354.
Yuan JH, Xie QS, Chen GC, et al. Impaired intestinal barrier function in type 2 diabetic patients measured by serum LPS, Zonulin, and IFABP[J]. J Diabetes Complications, 2021,35(2): 107766.
Wang Z, Ni X, Zhang L, et al. Toll-like receptor 4 and inflammatory micro-environment of pancreatic islets in type-2 diabetes mellitus: A therapeutic perspective[J]. Diabetes Metab Syndr Obes, 2020,13: 4261-4272.
Newton R, Priyadharshini B, Turka LA. Immunometabolism of regulatory T cells[J]. Nat Immunol, 2016,17(6): 618-625.
Isidro RA, Appleyard CB. Colonic macrophage polarization in homeostasis, inflammation, and cancer[J]. Am J Physiol Gastrointest Liver Physiol, 2016,311(1): G59-73.
Yunna C, Mengru H, Lei W, et al. Macrophage M1/M2 polarization[J]. Eur J Pharmacol, 2020,877: 173090.
Viola A, Munari F, Sánchez-Rodríguez R, et al. The metabolic signature of macrophage responses[J]. Front Immunol, 2019,10: 1462.
Huang X, Xiu H, Zhang S, et al. The role of macrophages in the pathogenesis of ALI/ARDS[J]. Mediators Inflamm, 2018: 1264913.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
 京公网安备11010802024621
 京公网安备11010802024621 
 