1.中山大学中山医学院生物化学与分子生物学教研室,广东 广州 510080
2.广州市妇女儿童医疗中心,广东 广州 510623
3.广东省基因操作和生物大分子产物工程技术研究中心,广东 广州 510080
陈宇涛,硕士生,研究方向:脂肪分泌因子与代谢调控,E⁃mail:chenyt276@mail2.sysu.edu.cn
纸质出版日期:2022-05-20,
收稿日期:2022-04-18,
扫 描 看 全 文
陈宇涛,杨洋,夏淦等.脂代谢相关基因ABHD5在泛癌中的表达模式及其与预后和免疫浸润的相关性分析[J].中山大学学报(医学科学版),2022,43(03):400-411.
CHEN Yu⁃tao,YANG Yang,XIA Gan,et al.Prognostic and Immunological Role of ABHD5: a Pan-Cancer Analysis[J].Journal of Sun Yat-sen University(Medical Sciences),2022,43(03):400-411.
陈宇涛,杨洋,夏淦等.脂代谢相关基因ABHD5在泛癌中的表达模式及其与预后和免疫浸润的相关性分析[J].中山大学学报(医学科学版),2022,43(03):400-411. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2022.0308.
CHEN Yu⁃tao,YANG Yang,XIA Gan,et al.Prognostic and Immunological Role of ABHD5: a Pan-Cancer Analysis[J].Journal of Sun Yat-sen University(Medical Sciences),2022,43(03):400-411. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2022.0308.
目的
2
探究脂代谢相关基因ABHD5在肿瘤中的表达水平及其与临床分期、预后、免疫浸润的关系。
方法
2
在本研究中,使用GTEx、TCGA、TIMER2.0、CPTAC数据库及免疫组织化学法、免疫印迹法探究ABHD5在泛癌中的表达模式及其与不同临床分期的相关性,使用Kaplan-Meier Plotter、Oncolnc、R2数据库探究ABHD5与预后的相关性,并使用TCGA、TIMER2.0数据库探究ABHD5与免疫细胞浸润之间的相关性,再用STRING、GEPIA数据库获取肿瘤中与ABHD5结合或共表达的基因,进行GO和KEGG富集分析。
结果
2
与正常组织相比,ABHD5在多种肿瘤中mRNA和蛋白表达水平下调,在少数肿瘤中升高。ABHD5高表达在8种肿瘤中与较好的预后相关,在2种肿瘤中与较差的预后相关,在9种肿瘤中与免疫细胞浸润水平呈正相关关系,并在泛癌中与中性粒细胞浸润及免疫检查点基因的表达具有显著正相关性。富集分析显示ABHD5与组蛋白去甲基化过程密切相关。
结论
2
ABHD5与中性粒细胞浸润、免疫检查点基因表达及组蛋白去甲基化过程相关,且与多种肿瘤的预后相关。
Objective
2
To evaluate the ABHD5 expression in pan-cancer and its correlations with the main clinical stages, prognosis and immune cell infiltration.
Methods
2
GTEx, TCGA, TIMER2.0, CPTAC databases, immunohistochemistry and western blot were used to analyze the expression levels of ABHD5 in different cancer tissues and adjacent tissues as well as correlations between ABHD5 expression and the main clinical stages. Kaplan-Meier Plotter, Oncolnc and R2 databases were used to explore the prognostic value of ABHD5. The relationship between ABHD5 and immune cell infiltration was analyzed by TCGA and TIMER2.0 databases. STRING and GEPIA databases were used to detect ABHD5-binding proteins and co-expression genes, which were then analyzed by GO and KEGG.
Results
2
The mRNA and protein expression levels of ABHD5 were lower in cancer tissues than those in normal tissues in multiple cancer types, but higher in few cancer types. High-level expression of ABHD5 was related to better prognosis in 8 cancer types and related to worse prognosis in 2. ABHD5 expression levels were positively correlated with immune cell infiltration in 9 cancer types, and were the same with neutrophil infiltration and expression of immune checkpoints in pan-cancer. Enrichment analysis showed that ABHD5 was related to histone demethylation.
Conclusion
2
Possibly used as a potential prognostic predictor in pan-cancer, ABHD5 was also correlated with neutrophil infiltration, expression of immune checkpoints and histone demethylation.
ABHD5泛癌表达差异中性粒细胞浸润免疫检查点组蛋白去甲基化
ABHD5pan-cancerdifferential expressionneutrophil infiltrationimmune checkpointshistone demethylation
Cerk IK, Wechselberger L, Oberer M. Adipose triglyceride lipase regulation: an overview[J]. Curr Protein Pept Sci, 2018, 19(2): 221-233.
Tavian D, Durdu M, Angelini C, et al. Recurrent N209* ABHD5 mutation in two unreported families with Chanarin Dorfman Syndrome[J]. Eur J Transl Myol, 2021, 31(2): 9796.
Ou J, Miao H, Ma Y, et al. Loss of Abhd5 promotes colorectal tumor development and progression by inducing aerobic glycolysis and epithelial-mesenchymal transition[J]. Cell Reports, 2014, 9(5): 1798-1811.
Peng Y, Miao H, Wu S, et al. ABHD5 interacts with BECN1 to regulate autophagy and tumorigenesis of colon cancer independent of PNPLA2[J]. Autophagy, 2016, 12(11): 2167-2182.
Gu Y, Chen Y, Wei L, et al. ABHD5 inhibits YAP-induced c-Met overexpression and colon cancer cell stemness via suppressing YAP methylation[J]. Nat Commun, 2021, 12(1): 6711.
Shi Z, Luo X, Zhao H, et al. Clinicalpathologic and prognostic significance of CGI-58 in endometrial cancer[J]. J Cancer, 2021, 12(24): 7374-7379.
Deng M, Bragelmann J, Schultze JL, et al. Web-TCGA: an online platform for integrated analysis of molecular cancer data sets[J]. BMC Bioinformatics, 2016, 17: 72.
Wei L, Jin Z, Yang S, et al. TCGA-assembler 2: software pipeline for retrieval and processing of TCGA/CPTAC data[J]. Bioinformatics, 2018, 34(9): 1615-1617.
Chandrashekar DS, Bashel B, Balasubramanya SAH, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses[J]. Neoplasia, 2017, 19(8): 649-658.
Bindea G, Mlecnik B, Tosolini M, et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer[J]. Immunity, 2013, 39(4): 782-795.
Li T, Fu J, Zeng Z, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells[J]. Nucleic Acids Res, 2020, 48(W1): W509-W514.
Tang Z, Li C, Kang B, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses[J]. Nucleic Acids Res, 2017, 45(W1): W98-W102.
杨洋,杨风雨,张晓燕,等. DNA去甲基化酶TET在神经母细胞瘤患者中表达及意义[J]. 中山大学学报(医学科学版), 2022, 43(1): 43-50.
Yang Y, Yang FY, Zhang XY, et al. Expression and clinical significance of DNA demethylase TET in the tissues in patients with neuroblastoma[J]. J Sun Yat-sen Univ (Med Sci), 2022, 43(1): 43-50.
Matthay KK, Maris JM, Schleiermacher G, et al. Neuroblastoma[J]. Nat Rev Dis Primers, 2016(2): 16078.
赖祥萍,赖天霞,廖伟. 神经母细胞瘤中N-myc的作用机制研究进展[J]. 医学综述, 2017, 23(5): 926-930.
Lai XP, Lai TX, Liao W. Research progress of underlying mechanism of N-myc in neuroblastoma[J]. Medical Recapitulate, 2017, 23(5): 926-930.
Norris MD, Bordow SB, Haber PS, et al. Evidence that the MYCN oncogene regulates MRP gene expression in neuroblastoma[J]. Eur J Cancer, 1997, 33(12): 1911-1916.
Chen F, Zhuang X, Lin L, et al. New horizons in tumor microenvironment biology: challenges and opportunities[J]. BMC Med, 2015, 13(1): 45.
Parkin J, Cohen B. An overview of the immune system[J]. Lancet, 2001, 357(9270): 1777-1789.
Roma-Rodrigues C, Mendes R, Baptista PV, et al. Targeting tumor microenvironment for cancer therapy[J]. Int J Mol Sci, 2019, 20(4): 840.
Wang J, Jia Y, Wang N, et al. The clinical significance of tumor-infiltrating neutrophils and neutrophil-to-CD8+ lymphocyte ratio in patients with resectable esophageal squamous cell carcinoma[J]. J Transl Med, 2014, 12: 7.
Zhang X, Zhang W, Yuan X, et al. Neutrophils in cancer development and progression: Roles, mechanisms, and implications (Review)[J]. Int J Mol Sci, 2016, 49(3): 857-867.
de Ke Visser SB, Wellenstein MD, de Visser KE. Neutrophils in cancer: neutral no more[J]. Nat Rev Cancer, 2016, 16(7): 431-446.
Li B, Chan HL, Chen P. Immune checkpoint inhibitors: basics and challenges[J]. Curr Med Chem, 2019, 26(17): 3009-3025.
Dykes SS, Gray AL, Coleman DT, et al. The Arf-like GTPase Arl8b is essential for three-dimensional invasive growth of prostate cancer in vitro and xenograft formation and growth in vivo[J]. Oncotarget, 2016, 7(21): 31037-31052.
Wu P, Onodera Y, Giaccia AJ, et al. Lysosomal trafficking mediated by Arl8b and BORC promotes invasion of cancer cells that survive radiation[J]. Commun Biol, 2020, 3(1): 620.
Kotarba G, Krzywinska E, Grabowska AI, et al. TFCP2/TFCP2L1/UBP1 transcription factors in cancer[J]. Cancer Lett, 2018, 420: 72-79.
Taracha A, Kotarba G, Wilanowski T. Neglected functions of TFCP2/TFCP2L1/UBP1 transcription factors may offer valuable insights into their mechanisms of action[J]. Int J Mol Sci, 2018, 19(10): 2852.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构