1.中山大学附属第三医院肾脏内科,广东 广州 510630
2.中山大学附属第三医院心内科,广东 广州 510630
刘佩佳,博士生,研究方向:慢性肾病,E-mail:lpjhhh123@163.com
纸质出版日期:2022-05-20,
收稿日期:2021-09-26,
扫 描 看 全 文
刘佩佳,方佳,李少敏等.中老年人群代谢综合征和估算肾小球滤过率快速下降相关性研究[J].中山大学学报(医学科学版),2022,43(03):488-495.
LIU Pei-jia,FANG Jia,LI Shao-min,et al.Association between Metabolic Syndrome and Rapid Decline of Estimated Glomerular Filtration Rate in Middle-Aged and Elderly Populations[J].Journal of Sun Yat-sen University(Medical Sciences),2022,43(03):488-495.
刘佩佳,方佳,李少敏等.中老年人群代谢综合征和估算肾小球滤过率快速下降相关性研究[J].中山大学学报(医学科学版),2022,43(03):488-495. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2022.0317.
LIU Pei-jia,FANG Jia,LI Shao-min,et al.Association between Metabolic Syndrome and Rapid Decline of Estimated Glomerular Filtration Rate in Middle-Aged and Elderly Populations[J].Journal of Sun Yat-sen University(Medical Sciences),2022,43(03):488-495. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2022.0317.
目的
2
探讨代谢综合征(MetS)及其组成因素与估算肾小球滤过率(eGFR)快速下降的关系。
方法
2
中国健康和养老追踪调查是一个全国范围的具有代表性的纵向研究,其主要研究中老年家户身心健康和社会活动状况。队列数据可以在中国健康和养老追踪调查官网申请后免费获取。我们选取2011年的基线数据和2015年的随访数据。本研究纳入年龄大于等于45岁eGFR≥60 mL·min
-1
·(1.73m
2
)
-1
的人群,且既往无恶性肿瘤、心脏病、中风、肾病,排除数据有缺失值、异常值人群,最终纳入4 400个参与者。eGFR快速下降定义为平均每年eGFR下降
>
3 mL·min
-1
·(1.73m
2
)
-1
。根据eGFR是否快速下降,将参与者分成eGFR快速下降组(770人)和eGFR非快速下降组(3 630人)。通过logistic回归检验MetS与eGFR快速下降关系,并进一步探索MetS各组成成分和eGFR快速下降的关系。
结果
2
和非MetS人群相比,MetS人群校正混杂因素后,MetS与eGFR快速下降的发生无关(
P
>
0.05),MetS发生eGFR快速下降优势比(OR)为0.988,95%置信区间(CI)为0.811~1.204。在校正混杂因素后,MetS各组成成分eGFR快速下降的风险分别是:中心型肥胖OR 95%CI值为0.968(0.778, 1.204),
P
=0.767;血糖升高OR 95%CI值为0.840(0.715, 0.986),
P
=0.032;血压升高OR 95%CI值为1.087(0.919, 1.285),
P
=0.328;高密度脂蛋白胆固醇降低OR 95%CI值为1.085(0.895, 1.316),
P
=0.404;甘油三脂升高OR95%CI值为1.110(0.918, 1.343),
P
=0.281。
结论
2
在中老年人群中,MetS不是eGFR快速下降独立危险因素,而血糖升高和降低与eGFR快速下降风险相关。血糖升高造成假象性的肾脏获益可能跟其疾病早期造成的肾脏高灌注和高滤过有关。我们需要更长时间的随访,进一步观察MetS及其组成因素对肾脏功能的动态影响。
Objective
2
To investigate the association of metabolic syndrome (MetS) and its components with rapid estimated glomerular filtration rate (eGFR) decline.
Methods
2
The China health and retirement longitudinal study (CHARLS) is a nationally representative cohort study focusing on physical and psychological health as well as social activities of middle-aged and elderly households. Cohort data could be obtained free of charge after application at the CHARLS website. We screened baseline data in 2011 and follow-up data in 2015 of CHARLS, selected those populations aged 45 and older, eGFR≥60 mL·min
-1
·(1.73m
2
)
-1
, without previous malignant tumors, heart disease, stroke and kidney disease, excluding those with missing values and outliers. Rapid eGFR decline was defined as an average annual decrease in eGFR of more than 3 mL·min
-1
·(1.73m
2
)
-1
. The 4400 participants enrolled were categorized into rapid eGFR decline group (770) and non-rapid eGFR decline group (3 630). Logistic regression was performed to test the association of MetS and its components with rapid decline of eGFR.
Results
2
Compared with subjects without MetS, in subjects with MetS, we found no association between MetS and rapid eGFR decline after controlling for confounding factors (
P
>
0.05), with an OR (95%CI) of 0.988 (0.811~1.204). After adjustment for confounding factors, the MetS components associated with rapid eGFR decline were central obesity (OR = 0.968, 95% CI: 0.778~1.204,
P
= 0.767), elevated blood glucose (OR = 0.840, 95% CI: 0.715~0.986,
P
= 0.032), hypertension (OR = 1.087, 95% CI: 0.919~1.285,
P
= 0.328), decreased high-density lipoprotein cholesterol (OR = 1.085, 95% CI: 0.895~1.316,
P
= 0.404) and elevated triglyceride (OR = 1.110, 95% CI: 0.918~1.343,
P
= 0.281).
Conclusions
2
MetS was not an independent risk factor of rapid eGFR decline in the middle-aged and elderly populations, and elevated blood glucose was associated with the reduced risk of rapid eGFR decline. The false renal benefit caused by elevated blood sugar might be related to the renal hyperperfusion and hyperfiltration in the early stage of the disease. We need further follow-up to observe the dynamic effects of the MetS and its components on renal function.
代谢综合征肾小球滤过率慢性肾脏病中国健康和养老追踪调查
metabolic syndromeglomerular filtration ratechronic kidney diseaseChina health and retirement longitudinal study
Alberti KG, Zimmet P, Shaw J. The metabolic syndrome--a new worldwide definition[J]. Lancet, 2005, 366(9491):1059-1062.
Zhang X, Lerman LO. The metabolic syndrome and chronic kidney disease[J]. Transl Res, 2017, 183:14-25.
Hu Y, Shi LX, Zhang Q, Peng NC. Increased risk of chronic kidney diseases in patients with metabolic syndrome: a 3-year prospective cohort study[J]. Curr Med Sci, 2019, 39(2):204-210.
Song H, Wang X, Cai Q, et al. Association of metabolic syndrome with decreased glomerular filtration rate among 75,468 Chinese adults: a cross-sectional study[J/OL]. PL S One, 2014, 9(11):e113450.
Chen J, Kong X, Jia X, et al. Association between metabolic syndrome and chronic kidney disease in a Chinese urban population[J]. Clin Chim Acta, 2017, 470:103-108.
Thomas G, Sehgal AR, Kashyap SR, et al. Metabolic syndrome and kidney disease: a systematic review and meta-analysis[J]. Clin J Am SocNephrol, 2011, 6(10):2364-2373.
Song H, Ding W, Zhuo L, et al. Association between the glomerular filtration rate of renal dysfunction and metabolic syndrome: an age-stratified analysis[J]. Zhonghua Liu Xing Bing Xue Za Zhi, 2014, 35(5):593-596.
Levey AS, Coresh J, Balk E, et al. National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification[J]. Ann Intern Med, 2003, 139(2):137-147.
Hayashi K, Takayama M, Abe T, et al. Investigation of metabolic factors associated with eGFR decline over 1 year in a Japanese population without CKD[J]. J Atheroscler Thromb, 2017, 24(8):863-875.
Huh JH, Yadav D, Kim JS, et al. An association of metabolic syndrome and chronic kidney disease from a 10-year prospective cohort study[J]. Metabolism, 2017, 67:54-61.
Zhao Y, Hu Y, Smith JP, et al. Cohort profile: the China Health and Retirement Longitudinal Study (CHARLS)[J]. Int J Epidemiol, 2014, 43(1):61-68.
Zhao Y, Straiss J, Yang G, et al. China Health and Retirement Longitudinal Study: 2011-2012 National Baseline Users’ Guide[EB/OL]. Beijing, China: National School of Development, Peking University, 2013. http://charls.pku.edu.cn/uploads/document/2011-charls-wave1/application/CHARLS_nationalbaseline_users_guide.pdfhttp://charls.pku.edu.cn/uploads/document/2011-charls-wave1/application/CHARLS_nationalbaseline_users_guide.pdf.
Chen X, Crimmins E, Hu PP, et al. Venous blood-based biomarkers in the China health and retirement longitudinal study: rationale, design, and results from the 2015 wave[J]. Am J Epidemiol, 2019, 188(11):1871-1877.
Joint Committee for Guideline Revision.2018 Chinese Guidelines for Prevention and Treatment of Hypertension-A report of the Revision Committee of Chinese Guidelines for Prevention and Treatment of Hypertension[J]. J Geriatr Cardiol, 2019;16(3):182-241.
Inker LA, Schmid CH, Tighiouart H, et al. Estimating glomerular filtration rate from serum creatinine and cystatin C[J]. N Engl J Med, 2012, 367(1):20-29.
Lindeman RD, Tobin J, Shock NW. Longitudinal studies on the rate of decline in renal function with age[J]. J Am Geriatr Soc, 1985, 33(4):278-285.
中华医学会糖尿病学分会. 2013年中国2型糖尿病防治指南[J]. 中华糖尿病杂志, 2014(6):447-497.
Chinese Diabetes Society. 2013 Chinese Guidelines for the Prevention and Treatment of Type 2 Diabetes[J]. Chin J Diabetes, 2014(6):447-497.
Lopez A, Cacoub P, Macdougall IC, et al. Iron deficiency anaemia[J]. Lancet, 2016, 387(10021):907-916.
Ruiz-Ortega M, Rayego-Mateos S, Lamas S, et al. Targeting the progression of chronic kidney disease[J].Nat Rev Nephrol, 2020, 16(5):269-288.
Kim Y, Park CW. Can management of the components of metabolic syndrome modify the course of chronic kidney disease?[J]. Kidney Res Clin Pract, 2020, 39(2):118-120.
Krolewski AS, Skupien J, Rossing P, et al. Fast renal decline to end-stage renal disease: an unrecognized feature of nephropathy in diabetes[J]. Kidney Int, 2017, 91(6):1300-1311.
Ruggenenti P, Porrini EL, Gaspari F, et al. Glomerular hyperfiltration and renal disease progression in type 2 diabetes[J]. Diabetes Care, 2012, 35(10):2061-2068.
Tonneijck L, Muskiet MH, Smits MM, et al. Glomerular hyperfiltration in diabetes: mechanisms, clinical significance, and treatment[J]. J Am Soc Nephrol, 2017, 28(4):1023-1039.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构