1.中山大学附属第一医院麻醉科,广东 广州,510080
2.徐州医科大学附属医院肛肠科,徐州 江苏,221000
3.中山大学附属第六医院结直肠肛门外科,广州 广东,510655
贺秋兰,硕士,主治医师,研究方向:临床药理与器官保护,E-mail:heqiulan@mail.sysu.edu.cn
纸质出版日期:2022-11-20,
收稿日期:2022-07-03,
扫 描 看 全 文
贺秋兰,温鲁平,李贵明等.基于血清代谢组学研究黄芪甲苷抑制高脂喂养的Apc Min/+小鼠结肠腺瘤性息肉形成[J].中山大学学报(医学科学版),2022,43(06):916-927.
HE Qiu-lan,WEN Lu-ping,LI Gui-ming,et al.Astragalaside IV Inhibits Colonic Adenomatous Polyps Formation in High-fat Diet-fed Apc Min/+ Mice by Regulating Serum Metabolomics[J].Journal of Sun Yat-sen University(Medical Sciences),2022,43(06):916-927.
贺秋兰,温鲁平,李贵明等.基于血清代谢组学研究黄芪甲苷抑制高脂喂养的Apc Min/+小鼠结肠腺瘤性息肉形成[J].中山大学学报(医学科学版),2022,43(06):916-927. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2022.0607.
HE Qiu-lan,WEN Lu-ping,LI Gui-ming,et al.Astragalaside IV Inhibits Colonic Adenomatous Polyps Formation in High-fat Diet-fed Apc Min/+ Mice by Regulating Serum Metabolomics[J].Journal of Sun Yat-sen University(Medical Sciences),2022,43(06):916-927. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2022.0607.
目的
2
探究黄芪甲苷(ASIV)对高脂喂养(HF)的腺瘤性息肉病基因突变(
Apc
Min/+
)小鼠结肠腺瘤性息肉(CAP)形成的预防作用及对血清代谢物紊乱的调控机制。
方法
2
将
Apc
Min/+
小鼠分成对照组(Con)、高脂喂养组(HF)、黄芪甲苷治疗组(HF-ASIV),每组8只。HF组和HF-ASIV组喂养高脂饲料8周,HF-ASIV组同时每两天给予ASIV (50 mg/kg) 灌胃。记录小鼠每日饮水量、进食量和体质量变化。8周末收集小鼠血清,取小肠末端及近端结肠记录CAP个数和病理观察 (HE); 免疫组化(IHC)检测各组小鼠CAP周围肠壁COX2水平;qRT-PCR检测肠壁IL-1 β和TNFα表达水平;液相质谱技术对小鼠肠道进行非靶向代谢轮廓分析, 筛选差异代谢物并进行功能富集。
结果
2
实验期间各组小鼠无死亡,HF-ASIV组与HF组相比肠息肉总数减少,以中腺瘤(直径1~3 mm)、大腺瘤(直径
>
3 mm)减少为主。HF-ASIV组小鼠肠壁的杯状细胞及潘氏细胞数量较HF组增加;肠壁COX2、IL-1 β和TNFα表达水平下降。组间两两比较的代谢物OPLS-DA评分差异显著 (
P
<
0.001;
P
= 0.02)。与HF组比较,HF-ASIV组血清中有13种差异代谢物发生显著回调,其中正负离子模式下功能富集到N-乙酰-α-D-氨基葡萄糖基-二磷酸的代谢物水平均显著提高 (
P
<
0.05),并与腺瘤数量呈负相关 (
P
<
0.01)。
结论
2
ASIV可减少高脂喂养
Apc
Min/+
小鼠结肠腺瘤性息肉的数量,与降低肠壁炎症、调节血清代谢产物N-乙酰-α-D-氨基葡萄糖基-二磷酸水平密切相关。
Objective
2
To investigate the preventive effects of Astragaloside IV (ASIV) on the formation of colonic adenomatous polyps (CAP) in high-fat-fed (HF) mice with adenomatous polyposis mutation (
Apc
Min/+
) and its regulation mechanism on serum metabolite disorders.
Methods
2
A total of 24 mice were evenly assigned to
Apc
Min/+
mice group (Con,
n
=8), high-fat diet-fed
Apc
Min/+
mice group (HF,
n
=8), and ASIV treatment group (HF-ASIV,
n
=8).
Apc
Min/+
mice in HF group and HF-ASIV group were given high-fat diet for 8 consecutive weeks to construct CAP mouse model. Meanwhile,
Apc
Min/+
mice in HF-ASIV group were given 50 mg/kg ASIV every other day for 8 weeks. Daily amount of water intake, food intake and body weight of mice in each group were recorded. At the end of the 8th week, mice were sacrificed for serum and the distal and proximal colon. The number of colonic polyps in each group was recorded. Hematoxylin-eosin (H
&
E) staining was used to observe the morphological changes of the proximal colon. Immunohistochemistry (IHC) was applied to analyze the amount of COX2 positive cells in the proximal colon. The expression levels of IL-1 β and TNFα in intestinal wall were detected by QRT PCR. Non-targeted metabolic profiling of mouse gut by liquid-phase mass spectrometry was used to screen for differential metabolites and perform functional enrichment.
Results
2
No mice died in each group during experiment.ASIV effectively reduced the size and the number of the CAPs that accompanied with the downregulation of inflammatory signaling molecules (COX-2, IL-1 β and TNFα). Alcian blue and lysozyme staining showed ASIV improved the gut epithelium by promoting goblet and Paneth cells population. Significant differences in metabolite OPLS-DA scores between groups were noted (
P
<
0.001;
P
= 0.02). Compared with HF group, 13 differential metabolites in the serum of HF-ASIV group were significantly recalled, and the levels of the metabolites functionally enriched to N-acetyl-α-D-glucosaminyl-diphosphate were significantly increased in the positive and negative ion modes (
P
<
0.05) , which was negatively correlated with the number of medium-sized adenomas (
P
<
0.01).
Conclusion
2
ASIV reduced the number of colonic adenomatous polyps in high-fat-fed
Apc
Min/+
mice and was closely associated with reduced intestinal wall inflammation and regulation of serum metabolite N-acetyl-α-D-glucosamine-diphosphate levels.
腺瘤性息肉黄芪甲苷结肠代谢组学N-乙酰-α-D-氨基葡萄糖基
adenomastous polypsAstragaloside IVcolonmetabolomicsN-Acetyl-α-D-Glucosamine
房静远, 李延青, 陈萦晅, 等. 中国结直肠癌预防共识意见(2016年, 上海)[J]. 胃肠病学, 2021, 26(05):279-311.
Fang JY, Li YQ, Chen YH, et al. Chinese consensus on colorectal cancer revention (2021, Shanghai) [J]. Chin J Gastroenterol, 2021, 26(05):279-311.
Caspi M, Wittenstein A, Kazelnik M, et al. Therapeutic targeting of the oncogenic Wnt signaling pathway for treating colorectal cancer and other colonic disorders[J]. Adv Drug Deliv Rev, 2021, 169:118-136.
Malki A, Elruz RA, Gupta I, et al. Molecular mechanisms of colon cancer progression and metastasis: recent insights and advancements[J]. Int J Mol Sci, 2020, 22(1):130.
Lin L, Tian Y. Exploring the mechanism of action of Sanzi formula in intervening colorectal adenoma by targeting intestinal flora and intestinal metabolism[J]. Front Microbiol, 2022, 13:1001372.
李熠, 李琼玉, 梁靖华. 基于数据挖掘中药预防结肠息肉术后复发的用药规律[J].实用中医内科杂志, 2021, 35(10):36-38;+151.
Li Y,Li QY,Liang JH. Study on law of using traditional Chinese medicine to prevent colon polyp recurrence after operation based on data mining[J]. J Pract Tradit Chin Med, 2021, 35(10):36-38;+151.
Zhang J, Wu C, Gao L, et al. Astragaloside IV derived from astragalus membranaceus: a research review on the pharmacological effects[J]. Adv Pharmacol, 2020, 87:89-112.
Chen T, Yang P, Jia Y. Molecular mechanisms of astragaloside-IV in cancer therapy[J]. Int Mol Med, 2021, 47(3):13.
Sun P, Liu Y, Wang Q, Zhang B. Astragaloside IV inhibits human colorectal cancer cell growth[J]. Front Biosci (Landmark Ed), 2019, 24(3):597-606.
Mangifesta M, Mancabelli L, Milani C, et al. Mucosal microbiota of intestinal polyps reveals putative biomarkers of colorectal cancer[J]. Sci Rep. 2018, 8(1):13974.
Nalbantoglu I, Blanc V, Davidson NO. Characterization of colorectal cancer development in Apc (min/+) Mice[J]. Methods Mol Biol, 2016, 1422:309-327.
Yu C, Wen XD, Zhang Z, et al. American ginseng significantly reduced the progression of high-fat-diet-enhanced colon carcinogenesis in Apc (Min/+) mice[J]. J Ginseng Res, 2015, 39(3):230-237.
Saxena A, Tammali R, Ramana KV, Srivastava SK. aldose reductase inhibitor, fidarestat prevents high-fat diet-induced intestinal polyps in Apc(Min/+) Mice[J]. Curr Cancer Drug Targets, 2018, 18(9):905-911.
夏阳, 朱庆超, 彭佳远, 等. 高脂饮食对大鼠结肠腺瘤形成的影响[J]. 中华消化杂志, 2016, 36(9):602-606.
Xia Y, Zhu QC, Peng JY, et al. Effects of high-fat diet on the formation of colorectal adenomas in rats[J]. Chin J Dig, 2016, 36(9):602-606.
Strum WB. Colorectal Adenomas[J]. N Engl J Med, 2016, 374(11): 1065-1075.
Chen D, Jin D, Huang S, et al. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and gut microbiota[J]. Cancer Lett, 2020, 469:456-467.
陈莎, 尹天雷, 潘永建,等. 中医药防治大肠息肉术后复发的Meta分析[J]. 中医药临床杂志, 2020, 32(1):94-97.
Chen S, Yin TL, Pan YJ, et al. Meta-analysis of chinese medicine for prevention and treatment of recurrence of colorectal polyps[J]. Clin J Tradit Chin Med, 2020, 32(1):94-97.
Auyeung KK, Han QB, Ko JK. Astragalus membranaceus: a review of its protection against inflammation and gastrointestinal cancers[J]. Am J Chin Med, 2016, 44(1):21-22.
Xie T, Li Y, Li SL, et al. Astragaloside IV enhances cisplatin chemosensitivity in human colorectal cancer via regulating NOTCH3[J]. Oncol Res, 2016, 24(6):447-453.
Jiang XG, Sun K, Liu YY, et al. Astragaloside IV ameliorates 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis implicating regulation of energy metabolism[J]. Sci Rep, 2017,7:41832.
He Q, Han C, Huang L, et al. Astragaloside IV alleviates mouse slow transit constipation by modulating gut microbiota profile and promoting butyric acid generation[J]. J Cell Mol Med, 2020, 24(16):9349-9361.
Kaur K, Saxena A, Debnath I, et al. Antibiotic-mediated bacteriome depletion in Apc(Min/+) mice is associated with reduction in mucus-producing goblet cells and increased colorectal cancer progression[J]. Cancer Med, 2018, 7(5):2003-2012.
Wang L, Chi YF, Yuan ZT, et al. Astragaloside IV inhibits the up-regulation of Wnt/β-catenin signaling in rats with unilateral ureteral obstruction[J]. Cell Physiol Biochem, 2014, 33(5):1316-1328.
Wu T, Wang G, Xiong Z, et al. Probiotics interact with lipids metabolism and affect gut health[J]. Front Nutr, 2022, 9:917043.
Boldyreva LV, Morozova MV, Saydakova SS, et al. Fat of the gut: epithelial phospholipids in inflammatory bowel diseases[J]. Int J Mol Sci, 2021, 22(21):11682.
Ganguly NK, Kingham JG, Lloyd B, et al. Acid hydrolases in monocytes from patients with inflammatory bowel disease, chronic liver disease, and rheumatoid arthritis[J]. Lancet, 1978, 1(8073):1073-1075.
Sasaki Y, Komeno M, Ishiwata A, et al. Mechanism of cooperative degradation of gum arabic arabinogalactan protein by bifidobacterium longum surface enzymes[J]. Appl Environ Microbiol, 2022,88(6):e0218721.
张金华, 田园, 杨晓萍. 肿瘤血管新生及中医药抗肿瘤血管新生的研究进展[J]. 新医学, 2022, 53(1): 18-21.
Zhang JH, Tian Y, Yang XP. Research progress of tumor angiogenesis and anti-tumor angiogenesis of traditional Chinese medicine[J]. J New Med, 2022, 53(1): 18-21.
杨赟, 陈德玉. 乙酰辅酶A合成酶2在肿瘤发生发展中的研究进展[J].新医学, 2021, 52(4): 234-238.
Yang Y, Chen DY. Research progress of Acetyl-CoA synthase 2 in tumor development[J]. J New Med, 2021, 52(4): 234-238.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构