图1 吗啡和曲马多对CD8+ T细胞体外激活和功能的影响
纸质出版日期:2022-11-20,
收稿日期:2022-09-05
扫 描 看 全 文
引用本文
阅读全文PDF
研究吗啡对CD8+ T细胞功能的影响以及对小鼠黑色素瘤肿瘤生长和PD-1抗体免疫治疗效果的影响。
体外激活CD8+ T细胞,并给予不同浓度的吗啡刺激,流式细胞术分析CD8+ T细胞激活和分泌IFN+的情况;雌性C57小鼠接种小鼠黑色素瘤肿瘤细胞,接种第7天开始腹腔注射中等剂量的吗啡,检测肿瘤体积的变化,观察小鼠黑色素瘤生长曲线和小鼠生存曲线;雌性C57/BL6小鼠接种小鼠黑色素瘤肿瘤细胞,连续腹腔注射给予PD-1抗体3次,同时腹腔注射中等剂量的吗啡,检测肿瘤体积的变化和小鼠生存曲线。
与对照组相比,中、高剂量吗啡可以显著抑制CD8+ T细胞的激活和IFN+的分泌(P <0.05);与对照组相比,腹腔注射中剂量吗啡可以显著增加黑色素瘤的生长体积(P <0.01),明显缩短荷瘤小鼠的生存期。与单独应用PD-1抗体组相比,吗啡与PD-1联合应用后,小鼠黑色素瘤的生长体积明显增加(P <0.01),荷瘤小鼠生存期明显缩短。
吗啡促进黑色素瘤的生长,并拮抗PD-1抗体免疫治疗效果,其作用可能与其抑制CD8+ T细胞的激活和功能有关。
To study the effect of morphine on the function of CD8+ T cells, tumor growth of melanoma and immunotherapy efficacy of PD-1.
Isolated CD8+ T cells were activated in vitro and stimulated with different concentrations of morphine. Flow cytometry was used to analyze the percentage of activated CD8+ T cell and the secretion of IFN+. Female C57/BL6 mice were inoculated with mouse melanoma tumor cells. On day 7 after inoculation, middle dose of morphine was injected intraperitoneally and the tumor volume was recorded. The tumor growth curve and survival curve of mice were plotted. Female C57/BL6 mice were inoculated with mouse melanoma tumor cells and were intraperitoneally treated with 200ug PD-1 antibody for 3 times continuously. Meanwhile, middle dose of morphine was injected intraperitoneally and tumor volume was measured. The tumor growth curve and survival curve of the mice were plotted.
Compared with control group , middle and high doses of morphine significantly inhibited the activation of CD8+ T cells and the secretion of IFN+(P<0.05); middle doses of morphine also promoted tumor growth (P<0.01) and shortened the survival time of tumor bearing mice. Combined treatment with PD-1 antibody, morphine significantly increased tumor growth(P<0.01) and shortened the survival time of bearing tumor mice.
Morphine promote tumor growth and antagonize the efficacy of PD-1 immunotherapy. These effects may be related to the inhibition of morphine on the activation and function of CD8+ T cells.
恶性肿瘤是危害人类健康的一类严重疾病,研究表明,肿瘤引起的疼痛在多数癌症患者中均有发生,其中 40%~50% 的患者为中至重度疼痛。因此,缓解疼痛是肿瘤治疗的重要部分,而吗啡为代表的阿片类药物是癌痛三阶梯治疗的主要药物[
实验动物均为 6-8 周龄、免疫健全的雌性C57/B6小鼠,购自北京维通利华实验动物有限公司。所有动物实验均经广州医科大学附属第二医院伦理委员会批准,并按照广州医科大学实验动物操作规范进行相应实验。小鼠黑色素瘤细胞(B16F10)购自美国典型培养物保藏中心(ATCC)。
盐酸吗啡注射液(东北制药),盐酸曲马多注射液(德国格兰泰),DMEM和1640培养基,胎牛血清(FBS)、青霉素-链霉素(penicillin-streptomycin)、2.5 g/L胰蛋白酶(typsin)、HEPES缓冲液、丙酮酸钠、L-谷氨酰胺、抗小鼠CD3和CD28抗体均购自美国Gibico公司。beta-巯基乙醇购自Sigma公司。所用流式抗体均购自Biolegend公司,包括:CD8-FITC(100706), IFN-PE/cy7(505826)。二氧化碳培养箱(Thermo),流式细胞仪(碧迪,Fortessa X-20)。T细胞培养基配置方法:向1640培养基中加入质量分数10%胎牛血清,质量分数1%青霉素-链霉素,20 mmol/L HEPES缓冲液,1 mmol/L丙酮酸钠,2 mmol/L L-谷氨酰胺,0.05 mmol/L beta-巯基乙醇。
1.3.1 小鼠T细胞体外培养
将小鼠用二氧化碳窒息法处死,用酒精对体表进行消毒。切开皮肤,剥离脾脏、肠系膜淋巴结及全身浅表淋巴结,置于无菌生理盐水中。用载玻片的毛面将剥离组织压碎成匀浆状,收集于无菌离心管中离心。用红细胞裂解液重悬细胞沉淀,室温静置5 min,离心后去除红细胞,用无菌PBS洗两遍。随后用70 µm筛网过滤,得到单细胞悬液,并通过CD8 T细胞阴选试剂盒(Milteny Biotec),将CD8 T细胞分离出来。根据实验需要,取一定数量的细胞,重悬于T细胞培养基中,并调整密度为100万个细胞/mL。按照200 μL/孔的体积,将T细胞接种于包备anti-CD3/28抗体(5 μg/mL)的U底96孔板。同时给予不同剂量的吗啡和曲马多刺激:吗啡高剂量(100 μmol/L),中剂量(50 μmol/L),低剂量(10 μmol/L);曲马多高剂量(100 μmol/L),中剂量(50 μmol/L),低剂量(10 μmol/L)。随后置于培养箱中培养48 h,收集前4 h,加入BFA(10 μg/mL MCE)阻断细胞因子的分泌。收集细胞后,首先于冰上对T细胞进行表面染色(CD8-FITC)15 min,用预冷PBS洗去未结合的抗体,用破膜缓冲液进行破膜固定4 h后进行细胞因子的染色(IFNγ -PE/cy7)。
1.3.2 CCK8法测定细胞增殖率
取处于对数生长期的B16细胞,按照2 000细胞/100 μL的密度接种于96孔板。第2天待细胞贴壁,用DMEM培养基将吗啡配制成不同浓度的工作液,每个浓度4个复孔。药物作用48 h后,吸弃旧培养基,加入含有质量分数10% CCK8的无血清DMEM培养基,继续放回培养箱培养2 h,于405 nm处测定OD值,计算细胞增殖率。
1.3.3 小鼠皮下移植瘤模型制备
用2.5 g/L胰蛋白酶将处于对数生长期的B16细胞消化为单细胞悬液,PBS洗3遍计数。按照20万细胞/小鼠的标准,取适量细胞重悬于PBS中,置于冰上备用。用体积分数75%酒精将小鼠左侧腹股沟处皮肤消毒,用1 mL胰岛素注射器将肿瘤细胞缓缓注射于小鼠皮下。接种后隔天观察,并记录肿瘤大小,绘制肿瘤生长曲线。肿瘤体积计算算式:V=L×W2×0.5。小鼠肿瘤长径达到20 mmol/L或者其自然死亡,2个条件满足其一,即认为达到实验终点,该时间算作小鼠的生存期。
1.3.4 小鼠肿瘤浸润免疫细胞分离及流式分析
将肿瘤组织剥离,加入生理盐水,用注射器活塞橡胶端将肿瘤组织研磨至单细胞并用70 μm 筛网过滤。取适量细胞悬液在冰上染色1 h,随后在流式细胞仪上进行分析。所有抗体均购自Biolegend公司,具体信息如下:Anti-CD45.2-FITC (109806), Anti-CD3-BV421 (100228), Anti-CD4-Buv395 (563790) and Anti-CD8-BV737 (612759) Anti-CD11c-PB (117322), Anti-CD19-APC (115512), Anti-F4/80-Buv395 (565614), Anti-CD11b-FITC (101206), Anti-NK1.1-PE (108708), Anti-PD-1-Percp-cy5.5 (135208), Anti-Tight-PE (141110), Anti-Tim3-Bv785 (119725)。
1.3.5 吗啡和PD-1抗体联合治疗实验
吗啡促进肿瘤生长实验:按照上述方法接种肿瘤细胞,从接种肿瘤的第7天开始通过腹腔注射的方式给予中等剂量的吗啡(5 mg/kg),每天一次,连续给药7 d。期间隔天观察肿瘤生长状况,监测肿瘤体积。
吗啡与PD-1抗体联合治疗实验:按照上述方法接种肿瘤细胞,从接种肿瘤的第7天开始,按照上述方案给予吗啡治疗。待吗啡治疗组肿瘤体积长至200 cm3时,通过腹腔注射的方式给予抗PD-1抗体(200 μg/小鼠, BioXcell, BE0146),隔两天给药一次,连续给药3次,期间记录肿瘤体积的变化。
所有实验数据用Graphpad Prism 8.0软件进行统计分析并绘图。数据均以均数±标准差进行表示。两组间比较采用Two-tailed Unpaired t Test, 两组以上的比较采用One-Way ANOVA方差分析,肿瘤体积的比较采用Two-Way ANOVA方差分析,小鼠生存曲线的比较采用Log-Rank test方法进行分析。P <0.05认为具有统计学差异。
将T细胞进行体外激活时,同时给予不同浓度的吗啡和曲马多处理。结果显示,与对照组相比,低剂量吗啡对T细胞激活没有影响(P=0.936 9),而中等剂量和高剂量的吗啡可以显著抑制CD8+ T细胞的激活(中剂量组P=0.034 3,高剂量组P=0.002)。我们同时也观察了曲马多对T细胞激活的影响。结果显示,与对照组相比,低、中、高剂量曲马多组中CD8+ T细胞的激活比例均没有显著差异(低剂量组P=0.999 7,中剂量组P=0.999 6, 高剂量组P=0.999 7;
图1 吗啡和曲马多对CD8+ T细胞体外激活和功能的影响
Fig.1 The effect of morphine and tramadol on the activation and the function of CD8+ T cells in vitro.
A: The percentage of activated CD8+ T cell detected by flow cytometry analysis;B: The percentage of CD8+ IFN-γ+ T cells was detected by flow cytometry analysis; C: Quantitative analysis of the percentage of activated CD8+ T cell in A. D: Quantitative analysis of the level of IFN-γ+ T cells in B. One-way ANOVA for all comparison, 1)P <0.05 VS control; 2)P<0.01 vs. control, n=3 in every group.
我们进一步分析了吗啡和曲马多对CD8+ T细胞功能的影响。细胞因子的分泌是反应CD8+ T细胞功能的重要指标,尤其是IFNγ的分泌。因此,我们进一步检测了激活的CD8+ T细胞中IFNγ的水平。结果显示,与对照组相比,低剂量的吗啡对T细胞IFNγ的分泌没有影响(P =0.568 3),而中等剂量和高剂量的吗啡可以显著抑制IFNγ的分泌(中剂量组P=0.022 3,高剂量组P <0.000 1)。我们同时检测了曲马多对激活的CD8+ T细胞IFNγ分泌的影响。结果显示,与对照组相比,低、中、高剂量曲马多组中CD8+ T细胞IFNγ的分泌均没有显著差异(低剂量组P=0.742 3,中剂量组P=0.429 9, 高剂量组P=0.998 0)(
我们首先在体外通过MTT法观察了不同剂量的吗啡对小鼠黑色素瘤细胞B16生长的影响。结果显示,高低剂量的吗啡对B16的生长均没有显著影响(低剂量组P=0.753 2,中剂量组P >0.999 9, 高剂量组P=0.988 1)。这些结果就提示我们,吗啡对B16细胞的增殖本身没有影响(
图2 吗啡对黑色素瘤细胞增殖和肿瘤生长的影响
Fig.2 The effect of morphine on the cell proliferation of melanoma and the tumor growth volume in mice
A: The effect of morphine on the cell proliferation of B16 cells, n=3. B: The effect of morphine on the tumor growth volume in mice, n=8. C: The effect of morphine on the survival days of the tumor-bearing mice, n=8. One-way AVOVA for A, Two-way ANOVA for B, Log-rank test for C, 1) P <0.01, vs. control.
进而我们进一步观察吗啡对小鼠体内黑色素瘤肿瘤生长的影响。在小鼠腹股沟处接种B16肿瘤细胞7 d后开始腹腔注射中等剂量的吗啡(5 mg/kg),每天1次,连续7 d,期间隔天观察肿瘤生长状况,监测肿瘤体积。结果显示,相较对照组,腹腔注射吗啡后肿瘤体积在第8天、第11天、第14天和第17天的生长体积明显增加。由此可见,吗啡可以显著促进小鼠黑色素瘤的生长(
通过上述实验,我们认为吗啡治疗可以促进肿瘤生长,而这种肿瘤促进作用并不是通过影响肿瘤细胞本身生长而实现的。因此,我们进一步分析了吗啡对肿瘤组织中不同免疫细胞的影响。我们首先分析了吗啡对不同免疫细胞浸润的影响。结果显示,吗啡治疗显著降低了肿瘤组织中CD8+ T细胞、巨噬细胞和NK细胞的比例,而对CD4+ T细胞和DC细胞的浸润没有明显抑制作用(CD4 T细胞 P=0.118 7,CD8 T细胞P=0.000 9,NK细胞P=0.009 2,DC细胞P=0.921 5,巨噬细胞P=0.016 2,
图3 吗啡对肿瘤浸润CD8 T细胞的影响
Fig 3 The effect of morphine on the CD8+ T cell infiltrated in tumor
A-C: The effect of morphine on the infiltration of different immune cells in of B16 tumors. D-E: The effect of morphine on the exhaustion of CD8+ T cells in B16 tumors. Two-tailed Unparied t Test for all comparisons, 1) P <0.05, 2) P <0.01, vs. control. n=3 in every group.
在明确了吗啡的促肿瘤作用后,我们进一步观察了吗啡对PD-1免疫治疗疗效的影响。在小鼠腹股沟处接种B16肿瘤细胞,待肿瘤长至200 mmol/L3时,腹腔连续给予PD-1抗体治疗的同时腹腔连续注射吗啡。结果显示,相较于单独应用PD-1免疫抑制剂组,中剂量的吗啡与PD-1联合应用后,黑色素瘤的生长体积从第12天开始明显增加。这说明吗啡可以显著降低PD-1抗体的疗效,促进肿瘤生长(P=0.031 4,
图 4 吗啡对PD-1免疫治疗疗效的影响
Fig. 4 The effect of morphine on the efficacy of PD-1 immunotherapy
A:The effect of morphine and PD-1 immunotherapy on the growth volume of melanoma in mice; B:The effect of morphine and PD-1 immunotherapy on the survival days of the tumor-bearing mice. Two-way ANOVA for A, Log-rank test for B, 1)P<0.01, vs. PD-1 group. n=8 in every group.
近年来,免疫系统在肿瘤发生发展中的生物学作用逐渐被揭示,尤其是CD8+ T细胞成为肿瘤治疗领域的研究热点。CD8+ T细胞通过释放细胞因子、颗粒酶等对肿瘤细胞发挥杀伤作用,而肿瘤细胞则通过表达PD-L1, CTLA4等免疫检查点,与CD8+ T细胞表面的PD-1, CD28等结合,从而抑制CD8+ T细胞的激活,逃避杀伤[
肿瘤治疗是一个长期用药过程,除了手术治疗和放化疗手段,癌痛管理是其中非常重要的一部分,镇痛药物往往从低剂量开始逐渐增加剂量以维持镇痛效果,吗啡为代表的阿片类镇痛药是癌痛管理中常用的第三阶梯用药[
研究证实,包括吗啡在内的阿片类药物可抑制免疫,促进血管生成在肿瘤发展过程中发挥重要作用[
PD-1又称程序性死亡受体1,是一种重要的免疫抑制分子,在T细胞和B细胞上表达,其要通过影响这两种T细胞的活化和功能从而抑制自身免疫反应,使肿瘤细胞发生免疫抑制和免疫逃逸[
曲马多是临床癌痛三阶梯药物中的第二阶梯代表性镇痛药,主要治疗中到重度疼痛。曲马多是弱阿片类药物,同时也能阻断去甲肾上腺素和5-羟色胺的再摄取。相较于吗啡,曲马多被认为能够维持机体的免疫功能。研究者通过动物和患者的体内研究证实曲马多能增强NK细胞活性、增加淋巴细胞增殖[
综上所述,我们的研究结果证实吗啡抑制CD8+ T细胞的激活和功能,抑制CD8+ T细胞在肿瘤组织中的浸润,增加其耗竭,促进黑色素瘤的生长,并拮抗PD-1免疫治疗的疗效。 我们的研究结果将为肿瘤患者合理选择镇痛药物进行癌痛管理提供重要线索。
Fielding F, Sanford TM, Davis MP. Achieving effective control in cancer pain: a review of current guidelines[J]. Int J Palliat Nurs, 2013, 19(12): 584-591. [百度学术]
Plummer JL, Cherry DA, Cousins MJ, et al. Long-term spinal administration of morphine in cancer and non-cancer pain: a retrospective study[J]. Pain, 1991, 44(3): 215-220. [百度学术]
Wiffen PJ, Cooper TE, Anderson AK, et al. Opioids for cancer-related pain in children and adolescents[J]. Cochrane Database Syst Rev, 2017, 7: CD012564. [百度学术]
He X, Xu C. Immune checkpoint signaling and cancer immunotherapy[J]. Cell Res, 2020, 30(8): 660-669. [百度学术]
Tuerxun H, Cui J. The dual effect of morphine on tumor development[J]. Clin Transl Oncol, 2019, 21(6): 695-701. [百度学术]
Zhang HW, Wang F, Zhou YQ, et al. Morphine Suppresses Liver Cancer Cell Tumor Properties In Vitro and In Vivo[J]. Front Oncol, 2021, 11: 666446. [百度学术]
刘严友葓, 徐虹铃, 赖楠, 等. 过表达IL-12的恶性黑色素瘤细胞在肿瘤免疫微环境重建过程中抑制T细胞表面PD-1的表达[J]. 南方医科大学学报, 2020, 40(6): 856-863. [百度学术]
Liu YYH, Xu HL, Lai N, et al. Interleukin-12 over-expression in malignant melanoma B16 cells reduces programmed death-1 expression on T cells in mice with immune reconstitution[J]. J South Med Univ, 2020, 40 (6): 856-863 [百度学术]
Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle[J]. Immunity, 2013, 39(1): 1-10. [百度学术]
Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance[J]. Nature, 2014, 515(7528): 568-571. [百度学术]
Wang W, Green M, Choi JE, et al. CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy[J]. Nature, 2019, 569(7755): 270-274. [百度学术]
王军, 胡毅平, 李筱, 等. P-糖蛋白表达对晚期癌痛病人吗啡或丁丙诺啡镇痛效果的影响[J]. 中华麻醉学杂志, 2010, (10): 1212-1215. [百度学术]
Wang J, Hu YP, Li X, et al. The effects of P-sugar protein expression on patients permanery or tanophin analgesic effect on patients with advanced cancer pain [J]. Chin J Anesth, 2010 (10): 1212- 1215. [百度学术]
Afsharimani B, Cabot P, Parat MO. Morphine and tumor growth and metastasis[J]. Cancer Metastasis Rev, 2011, 30(2): 225-238. [百度学术]
Ishikawa M, Tanno K, Kamo A, et al. Enhancement of tumor growth by morphine and its possible mechanism in mice[J]. Biol Pharm Bull, 1993, 16(8): 762-766. [百度学术]
Lazarczyk M, Matyja E, Lipkowski AW. A comparative study of morphine stimulation and biphalin inhibition of human glioblastoma T98G cell proliferation in vitro[J]. Peptides, 2010, 31(8): 1606-1612. [百度学术]
Gupta K, Kshirsagar S, Chang L, et al. Morphine stimulates angiogenesis by activating proangiogenic and survival-promoting signaling and promotes breast tumor growth[J]. Cancer Res, 2002, 62(15): 4491-4498. [百度学术]
Vaseghi G, Dana N, Ghasemi A, et al. Morphine promotes migration and lung metastasis of mouse melanoma cells[J]. Braz J Anesthesiol, 2022. doi: 10.1016/j.bjane.2021.10.019. [百度学术]
Bhuniya A, Guha I, Ganguly N, et al. NLGP attenuates murine melanoma and carcinoma metastasis by modulating cytotoxic CD8(+) T Cells[J]. Front Oncol, 2020, 10: 201. [百度学术]
Kohlhapp FJ, Broucek JR, Hughes T, et al. NK cells and CD8+ T cells cooperate to improve therapeutic responses in melanoma treated with interleukin-2 (IL-2) and CTLA-4 blockade[J]. J Immunother Cancer, 2015, 3: 18. [百度学术]
白冰, 黄宇光. 手术和麻醉药物对肿瘤患者围手术期免疫功能的影响[J]. 中国免疫学杂志, 2019, 35(7): 881-887. [百度学术]
Bai B, Huang YG. Effect of surgeries and anesthetics on perioperative immune function in patients with cancer [J]. J Chin Immunol, 2019,35 (7): 881-887. [百度学术]
Boland JW, Pockley AG. Influence of opioids on immune function in patients with cancer pain: from bench to bedside[J]. Br J Pharmacol, 2018, 175(14): 2726-2736. [百度学术]
Roy S, Ninkovic J, Banerjee S, et al. Opioid drug abuse and modulation of immune function: consequences in the susceptibility to opportunistic infections[J]. J Neuroimmune Pharmacol, 2011, 6(4): 442-465. [百度学术]
Hou M, Zhou NB, Li H, et al. Morphine and ketamine inhibit immune function of gastric cancer patients by increasing percentage of CD4(+)CD25(+)Foxp3(+) regulatory T cells in vitro[J]. J Surg Res, 2016, 203(2): 306-312. [百度学术]
Neijssen J, Herberts C, Drijfhout JW, et al. Cross-presentation by intercellular peptide transfer through gap junctions[J]. Nature, 2005, 434(7029): 83-88. [百度学术]
Oviedo-Orta E, Evans WH. Gap junctions and connexins: potential contributors to the immunological synapse[J]. J Leukoc Biol, 2002, 72(4): 636-642. [百度学术]
Suzuki M, Narita M, Nakamura A, et al. Role of gap junction in the expression of morphine-induced antinociception[J]. Eur J Pharmacol, 2006, 535(1-3): 169-171. [百度学术]
Han Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer[J]. Am J Cancer Res, 2020, 10(3): 727-742. [百度学术]
Iqira S, Adam LC, Markus W, et al. New insights on tramadol and immunomodulation[J]. Current Oncology Reports, 2021, 23(11):123 [百度学术]
Paola S, Mauro B, Leda G, et al. The effects of tramadol and morphine on immune anesth analg responses and pain after surgery in Cancer patients[J]. Anesth Analg, 2000, 90(6):1411-1414. [百度学术]
Xia M, Tong JH, Zhou ZQ, et al. Tramadol inhibits proliferation, migration and invasion via α2-adrenoceptor signaling in breast cancer cells[J]. Eur Rev Med Pharmacol Sci. 2016;20(1):157-165. [百度学术]
Xia M, Tong JH, Ji NN, et al. Tramadol regulates proliferation, migration and invasion via PTEN/PI3K/AKT signaling in lung adenocarcinoma cells[J]. Eur Rev Med Pharmacol Sci, 2016 ,20(12):2573-2580. [百度学术]
Kim MH, Lee JR, Kim KJ, et al. Identification for antitumor effects of tramadol in a xenograft mouse model ..using orthotopic breast cancer cells[J]. Sci Rep. 2021;11(1):22113 [百度学术]
36
浏览量
212
下载量
0
CSCD
相关文章
相关作者
相关机构