1.南方医科大学珠江医院心脏中心实验室心血管内科,广东 广州 510220
2.南方医科大学珠江医院健康管理科,广东 广州 510220
卢维哲,硕士生,研究方向:心血管疾病,E-mail:787815810@qq.com
纸质出版日期:2023-01-20,
收稿日期:2022-10-10,
扫 描 看 全 文
卢维哲,刘海琼,杨涵滟等.MG53蛋白对小鼠阿霉素急性心肌毒性的影响及机制[J].中山大学学报(医学科学版),2023,44(01):34-43.
LU Wei-zhe,LIU Hai-qiong,YANG Han-yan,et al.Effect of MG53 on Cardiac Function Affected by Acute Doxorubicin-Induced Cardiotoxicity in Mice and Its Mechanism[J].Journal of Sun Yat-sen University(Medical Sciences),2023,44(01):34-43.
卢维哲,刘海琼,杨涵滟等.MG53蛋白对小鼠阿霉素急性心肌毒性的影响及机制[J].中山大学学报(医学科学版),2023,44(01):34-43. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20221208.001.
LU Wei-zhe,LIU Hai-qiong,YANG Han-yan,et al.Effect of MG53 on Cardiac Function Affected by Acute Doxorubicin-Induced Cardiotoxicity in Mice and Its Mechanism[J].Journal of Sun Yat-sen University(Medical Sciences),2023,44(01):34-43. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20221208.001.
目的
2
本研究拟探究MG53蛋白对小鼠阿霉素心肌毒性的心脏功能的影响及机制。
方法
2
体内实验选择C57BL/6小鼠腹腔注射阿霉素20 mg/kg 1周诱导急性阿霉素心肌毒性模型;体外实验使用1 μmol/L阿霉素处理大鼠原代心肌细胞构建DIC模型。采用小动物心脏超声分析小鼠心脏功能,观察左室射血分数、缩短分数的变化;通过qPCR技术分析心脏重构相关基因
ANP、BNP、α-MHC
,自噬相关基因
Beclin1、LC3
及凋亡基因
CASPASE3
的表达改变;采用免疫印迹技术检测自噬相关蛋白Beclin1、LC3及凋亡相关蛋白caspase3的表达水平;采用透射电镜观察心肌组织中的自噬小体;采用TUNEL试剂盒检测原代心肌细胞的凋亡水平。
结果
2
心脏超声结果显示:与假手术组(Sham)相比,阿霉素组(DOX)及心肌原位注射对照腺相关病毒组(DOX+AAV9-NC)小鼠心脏功能显著下降(EF:Sham:86.06 ± 2.08
vs.
DOX:58.97 ± 1.62,
P
<
0.0001;Sham:86.06 ± 2.08
vs.
DOX+AAV9-NC:59.00 ± 1.86,
P
<
0.000 1。FS:Sham:45.47 ± 1.95
vs.
DOX:30.68 ± 1.21,
P
<
0.000 1;Sham:45.47 ± 1.95
vs.
DOX+AAV9-NC:30.79 ± 1.13,
P
<
0.000 1),而心肌原位注射腺相关病毒过表达MG53组(DOX+AAV9-MG53)小鼠的心脏功能障碍得到显著改善(EF:DOX+AAV9-MG53:66.93 ± 1.78
vs.
DOX+AAV9-NC:59.00 ± 1.86,
P
<
0.000 1。FS:DOX+AAV9-MG53:36.35 ± 1.33
vs.
DOX+AAV9-NC:30.79 ± 1.13,
P
<
0.000 1);电镜结果显示,过表达MG53后心肌细胞的自噬小体增加;qPCR结果表明过表达MG53显著下调心脏重构相关基因的表达;此外,western blot结果进一步明确过表达MG53可显著下调caspase3蛋白表达,并上调Beclin1、LC3蛋白表达(caspase:DOX+AAV9-MG53:1.49 ± 0.13
vs.
DOX+AAV9-NC:2.49 ± 0.46,
P
= 0.000 2;Beclin-1:DOX+AAV9-MG53:0.82 ± 0.02
vs.
DOX+AAV9-NC:0.62 ± 0.05,
P
<
0.000 1;LC3:DOX+AAV9-MG53:0.83 ± 0.04
vs.
DOX+AAV9-NC:0.40 ± 0.05,
P
<
0.000 1),而敲低MG53可显著上调caspase3蛋白表达,下调Beclin1、LC3蛋白表达(caspase:DOX+si-MG53:4.52 ± 0.28
vs.
DOX+si-NC:3.37 ± 0.08,
P
<
0.000 1;Beclin-1:DOX+si-MG53:0.34 ± 0.06
vs.
DOX+si-NC:0.54 ± 0.07,
P
= 0.026 2;LC3:DOX+si-MG53:0.41 ± 0.12
vs.
DOX+si-NC:0.70 ± 0.07,
P
= 0.001 5);TUNEL检测结果提示过表达MG53可显著抑制心肌细胞凋亡(DOX+Ad-MG53:9.41 ± 0.53
vs.
DOX+Ad-NC:29.34 ± 7.29,
P
<
0.000 1),敲低MG53可显著促进心肌细胞凋亡。(DOX+si-MG53:71.34 ± 5.90
vs.
DOX+si-NC:32.19 ± 9.91,
P
<
0.000 1)
结论
2
MG53可抑制心肌细胞凋亡,并促进自噬,改善小鼠DIC心脏重构进程,减轻心脏功能障碍。
Objective
2
This study was designed to explore the effect of MG53 on cardiac function affected by acute doxorubicin (DOX)-induced cardiotoxicity (DIC) in mice and its possible mechanism.
Methods
2
In vivo
, C57BL/6 mice were injected intraperitoneally with twenty mg/kg DOX for one week to induce the acute DIC.
In vitro
, neonatal rat cardiomyocytes (NRCs) were treated with 1 μmol/L DOX to induce DIC. A small animal ultrasound imaging system was used to evaluate cardiac function, and the left ventricular changes in ejection fraction (EF) and fraction shortening (FS) were measured. qPCR technology was used to evaluate cardiac remodeling related factors
ANP, BNP
and
α-MHC
, autophagy-related factors
Beclin1
and
LC3
, and apoptosis-related factor
CASPASE3
. Autophagy-related protein levels of Beclin1, LC3 and apoptosis-related protein levels of caspase3 were assessed by Western Blot. Transmission electron microscopy (TEM) was used to detect autophagosomes in heart tissues. TUNEL assay kit was used to detect apoptosis in neonatal murine cardiomyocytes.
Results
2
The small animal ultrasound imaging revealed cardiac function was significantly reduced by doxorubicin in the DOX group and DOX+AAV9-NC group compared with the sham group (EF: Sham: 86.06 ± 2.08
vs.
DOX:58.97 ± 1.62,
P
<
0.000 1; Sham: 86.06 ± 2.08
vs.
DOX+AAV9-NC: 59.00 ± 1.86,
P
<
0.000 1. FS: Sham: 45.47 ± 1.95
vs.
DOX:30.68 ± 1.21,
P
<
0.000 1; Sham: 45.47 ± 1.95
vs.
DOX+AAV9-NC: 30.79 ± 1.13,
P
<
0.000 1). However, the overexpression of MG53 with adeno-associated virus9 (AAV9) ameliorated cardiac dysfunction (EF: DOX+AAV9-MG53: 66.93 ± 1.78
vs.
DOX+AAV9-NC: 59.00 ± 1.86,
P
<
0.000 1. FS: DOX+AAV9-MG53: 36.35 ± 1.33
vs.
DOX+AAV9-NC: 30.79 ± 1.13,
P
<
0.000 1). TEM showed autophagosomes were increased in the DOX+AAV9-MG53 group compared with the DOX group and DOX+AAV9-NC. qPCR results suggested that MG53 down-regulated the mRNA expression of cardiac remodeling related genes. Additionally, Western blot results confirmed that the protein level of caspases3 was decreased and Beclin1 and LC3 expression was increased in the DOX+AAV9-MG53 group compared with those in the DOX group and DOX+AAV9-NC group (caspase: DOX+AAV9-MG53: 1.49 ± 0.13
vs.
DOX+AAV9-NC: 2.49 ± 0.46,
P
= 0.000 2; Beclin-1: DOX+AAV9-MG53:0.82 ± 0.02
vs.
DOX+AAV9-NC: 0.62 ± 0.05,
P
<
0.000 1; LC3: DOX+AAV9-MG53: 0.83 ± 0.04
vs.
DOX+AAV9-NC: 0.40 ± 0.05,
P
<
0.000 1). In contrast, knockdown of MG53 significantly up-regulated the protein level of Caspase3 and significantly down-regulated the protein level of Beclin1 and LC3 (caspase: DOX+si-MG53: 4.52 ± 0.28
vs.
DOX+si-NC: 3.37 ± 0.08,
P
<
0.000 1; Beclin-1: DOX+si-MG53: 0.34 ± 0.06
vs.
DOX+si-NC: 0.54 ± 0.07,
P
= 0.026 2; LC3: DOX+si-MG53: 0.41 ± 0.12
vs.
DOX+si-NC: 0.70 ± 0.07,
P
= 0.001 5). TUNEL analysis showed overexpression of MG53 significantly inhibited the apoptosis of cardiomyocytes (DOX+Ad-MG53: 9.41 ± 0.53
vs.
DOX+Ad-NC: 29.34 ± 7.29,
P
<
0.000 1), and knockdown of MG53 significantly facilitate the apoptosis of cardiomyocytes (DOX+si-MG53: 71.34 ± 5.90
vs.
DOX+si-NC: 32.19 ± 9.91,
P
<
0.000 1).
Conclusion
2
MG53 inhibits cardiac apoptosis and enhances autophagy, which delays cardiac remodeling and ameliorates cardiac dysfunction.
MG53阿霉素心肌毒性心脏功能凋亡自噬
MG53doxorubicin-induced cardiotoxicitycardiac functionapoptosisautophagy
Gao L, Wu ZX, Assaraf YG, et al. Overcoming anti-cancer drug resistance via restoration of tumor suppressor gene function[J]. Drug Resist Updat, 2021, 57: 100770.
Levis BE, Binkley PF, Shapiro CL. Cardiotoxic effects of anthracycline-based therapy: what is the evidence and what are the potential harms[J]. Lancet Oncol, 2017, 18(8): 445-456
Unverferth DV, Magorien RD, Leier CV, et al. Doxorubicin cardiotoxicity[J]. Cancer Treat Rev, 1982, 9(2): 149-164.
Deidda M, Madonna R, Mango R, et al. Novel insights in pathophysiology of antiblastic drugs-induced cardiotoxicity and cardioprotection[J]. J Cardiovasc Med (Hagerstown), 2016,17 Suppl 1:S76-S83.
Farías JG, Molina VM, Carrasco RA, et al. Antioxidant therapeutic strategies for cardiovascular conditions associated with oxidative stress[J]. Nutrients, 2017, 9(9): 966.
Angsutararux P, Luanpitpong S, Issaragrisil S. Chemotherapy-induced cardiotoxicity: Overview of the roles of oxidative stress[J]. Oxid Med Cell Longev, 2015, 2015: 795602.
Li D, Yang Y, Wang S, et al. Role of acetylation in doxorubicin-induced cardiotoxicity[J]. Redox Biol, 2021, 46: 102089.
Morikawa Y, Heallen T, Leach J, et al. Dystrophin-glycoprotein complex sequesters Yap to inhibit cardiomyocyte proliferation[J]. Nature, 2017, 547(7662): 227-231.
Sawicki KT, Sala V, Prever L, et al. Preventing and treating anthracycline cardiotoxicity: new insights[J]. Annu Rev Pharmacol Toxicol, 2021, 61: 309-332.
Zhang Y, Wu HK, Lv F, et al. MG53: Biological function and potential as a therapeutic target[J]. Mol Pharmacol, 2017, 92(3): 211-218.
Cao CM, Zhang Y, Weisleder N, et al. MG53 constitutes a primary determinant of cardiac ischemic preconditioning[J]. Circulation, 2010, 121(23): 2565-2574.
Shan D, Guo S, Wu HK, et al. Cardiac ischemic preconditioning promotes MG53 secretion through H2O2-activated protein kinase C-δ signaling[J]. Circulation, 2020, 142(11): 1077-1091.
Gu LJ, Zhang YY, Zhu N, et al. Mitsugumin 53 promotes mitochondrial autophagy through regulating Ambra1 expression in C2C12 myoblast cells[J]. Cell Biol Int, 2019, 43(3): 290-298.
Tokarska-schlattner M, Wallimann T, Schlattner U. Alterations in myocardial energy metabolism induced by the anti-cancer drug doxorubicin[J]. C R Biol, 2006, 329(9): 657-668.
Zhang C, Chen B, Wang Y, et al. MG53 is dispensable for T-tubule maturation but critical for maintaining T-tubule integrity following cardiac stress[J]. J Mol Cell Cardiol, 2017, 112: 123-130.
Zhang Y, Lv F, Jin L, et al. MG53 participates in ischaemic postconditioning through the RISK signalling pathway[J]. Cardiovasc Res, 2011, 91(1): 108-115.
Liu W, Wang G, Zhang C, et al. MG53, a novel regulator of KChIP2 and Ito,f, plays a critical role in electrophysiological remodeling in cardiac hypertrophy[J]. Circulation, 2019, 139(18): 2142-2156.
Zhong W, Benissan-messan DZ, Ma J, et al. Cardiac effects and clinical applications of MG53[J]. Cell Biosci, 2021, 11(1): 115.
Xie H, Yan Z, Feng S, et al. Prognostic value of circulating MG53 levels in acute myocardial infarction[J]. Front Cardiovasc Med, 2020, 7: 596107.
Shan R, Liu N, Yan Y, et al. Apoptosis, autophagy and atherosclerosis: relationships and the role of Hsp27[J]. Pharmacol Res, 2021, 166: 105169.
Ham YM, Mahoney SJ. Compensation of the AKT signaling by ERK signaling in transgenic mice hearts overexpressing TRIM72[J]. Exp Cell Res, 2013, 319(10): 1451-1462.
Barnes PJ. Mechanisms of development of multimorbidity in the elderly[J]. Eur Respir J, 2015, 45(3): 790-806.
Dossou AS, Basu A. The emerging roles of mTORC1 in macromanaging autophagy[J]. Cancers (Basel), 2019, 11(10): 1422.
Paquette M, El-houjeiri L, Pause A. mTOR pathways in cancer and autophagy[J]. Cancers (Basel), 2018, 10(1): 18.
Lu L, Wu W, Yan J, et al. Adriamycin-induced autophagic cardiomyocyte death plays a pathogenic role in a rat model of heart failure[J]. Int J Cardiol, 2009, 134(1): 82-90.
He H, Wang L, Qiao Y, et al. Epigallocatechin-3-gallate pretreatment alleviates doxorubicin-induced ferroptosis and cardiotoxicity by upregulating AMPKα2 and activating adaptive autophagy[J]. Redox Biol, 2021, 48: 102185.
Nowosad A, Jeannot P, Callot C, et al. p27 controls Ragulator and mTOR activity in amino acid-deprived cells to regulate the autophagy-lysosomal pathway and coordinate cell cycle and cell growth[J]. Nat Cell Biol, 2020, 22(9): 1076-1090.
蒋玉坤,胡芝爱,关禹哲,等. 应力诱导自噬的机械转导过程研究进展[J]. 四川大学学报(医学版), 2021, 52(6): 929-935.
Jiang YK, Hu ZA, Guan YZ, et al. Research progress in mechanotransduction process of mechanical-stress-induced autophagy[J]. J Sichuan Univ ( Med Sci ) , 2021, 52(6): 929-935.
Li DL, Wang ZV, Ding G, et al. Doxorubicin Blocks Cardiomyocyte Autophagic Flux by Inhibiting Lysosome Acidification[J]. Circulation, 2016, 133(17): 1668-1687.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构