图1 小鼠光学离焦性近视模型
纸质出版日期:2023-01-20,
收稿日期:2022-09-30
扫 描 看 全 文
引用本文
阅读全文PDF
探索一种新的小鼠光学离焦性近视 (LIM) 模型的构建方法,揭示其屈光度与眼生物学参数的变化。
27只21日龄C57BL/6小鼠分为3组:LIM组、平光镜 (PL) 组和空白对照 (N) 组,比例为5:1:3。以右眼为干预眼,左眼作为自身对照。于实验开始前,干预后第1、2、3和4周,复方托吡卡胺散瞳后检影检测屈光度,光学相干断层扫描在体测量眼轴。各组内,左右眼进行配对t检验。3组间比较,采用Welch's ANOVA,差异有统计学意义时,采用Dunnett's T3法校正P值进行两两比较。
离焦诱导2周,LIM组内干预眼屈光度比对侧眼向近视漂移约(-2.55±1.54) D(t=6.430, P<0.000 1), 伴眼轴较对侧增长约(0.051 ±0.024) mm(t=7.837, P<0.000 1);组间比较,LIM组屈光度较PL组或N组近视漂移的均值分别为-2.30 D (P=0.014),-2.55 D (P<0.000 1),LIM组眼轴较PL组或N组增长的均值分别为0.048 mm (P<0.000 1)、0.047 mm (P<0.000 1)。随干预时间延长,近视漂移程度增加。
本研究构建了一种基于搭扣设计的可拆卸式小鼠LIM模型并进行验证,通过2周诱导,屈光度显著向近视漂移,眼轴显著增长。该LIM模型搭建简易,可为近视研究的动物实验的模型构建提供参考。
To explore a new model for lens-induced myopia (LIM) in mice and describe the changes of diopter and ocular biological parameters.
Twenty-seven 21-day-old C57BL/6 mice were divided into three groups (ratio, 5:1:3): LIM group, plano lens (PL) group and normal control (N) group. The right eyes were intervened while the left eyes were left as control. The refraction was detected with retinoscopy after the pupils were dilated with compound topicamide and ocular axial length was measured by optical coherence tomography (OCT) in vivo at baseline and 1, 2, 3, and 4 weeks after the intervention. Paired t test was performed between left and right eyes within each group. Welch's ANOVA was used for comparison among the three groups. When the difference was statistically significant, the Dunnett's T3 was used to correct P value for pairwise comparison.
After 2 weeks of defocus induction, the refraction of the intervened eye in LIM group shifted to myopia about (-2.55±1.54) D(t=6.430, P<0.000 1), and the ocular axial length (AL) increased about (0.051±0.024) mm(t=7.837, P<0.000 1). The difference of interocular change in refraction in LIM group compared with PL group and N group was -2.30 D (P=0.014) and -2.55 D (P<0.000 1), respectively. The difference of interocular change in AL in LIM group was 0.048 mm (P<0.000 1) and 0.047 mm (P<0.000 1) compared with that in PL group and N group, respectively. With the extension of intervention time, the degree of myopia drift increased.
In this study, a clasp-based and detachable LIM model was described and validated. After 2 weeks of intervention, the refraction shifted significantly toward myopia and the AL increased significantly. The LIM model is simple to construct and can provide a reference for the model construction of animal experiments in myopia research.
在屈光发育过程中,过度增长的眼轴超过眼球屈光力的代偿时,即发生近视[
30只21日龄的近交系C57BL/6小鼠,野生型,SPF级,雌雄不限,体质量约10~20 g,经称重、验光和外观检查排除3只,剩余27只符合实验标准,对27只小鼠进行实验。动物购自北京华阜康生物科技股份有限公司。实验经中山大学中山眼科中心动物实验伦理委员会审批通过(实验伦理批号:O2021016)。在正常的屏障区实验室条件下饲养,自由摄食,进水,室温控制在20~25 ℃,采用具有定时装置的日光灯照明(250~300 lux),饲养在12 h/12 h的光照黑暗环境中。
小鼠若出现以下情况需排除:① 小鼠体质量太轻(小于10 g);② 眼球发育不全,或有结膜炎、白内障等眼部疾病;③ 双眼屈光参差大于3.00 D。
1.2.1 主要耗材
镜片购于广州京德嘉润视觉科技有限公司(材质:PMMA,基弧半径:8.00 mm,总直径:9.00 mm,LIM组后顶焦度-25.00 D,平光镜组后顶焦度0 D)。蘑菇搭扣购自美国3M公司(型号:SJ4570超薄型,SJ3560)。
1.2.2 仪器
使用带状光检影镜(YZ24,苏州六六视觉科技股份有限公司)进行屈光度检测。使用光谱域光学相干断层扫描 (Spectral-domain optical coherence tomography, SD-OCT, Leica Bioptigen) 进行眼生物学参数测量。
1.3.1 分
组 27只小鼠于21日龄分别编号,进行随机分组,分为3组:LIM组、平光镜(plano lens, PL)组和空白对照(normal control, N)组,分组比例为5:1:3。以右眼为干预眼,左眼作为自身对照。LIM组小鼠右眼戴-25.00 D的镜片,PL组小鼠右眼戴0 D的镜片,N组小鼠双眼不做干预。3组小鼠均配戴塑料颈圈以防止小鼠抓挠眼球或镜片。
1.3.2 光学离焦性近视模型的构建
小鼠LIM模型如
图1 小鼠光学离焦性近视模型
Fig. 1 Mouse Lens-induced myopia model
① LIM装置的构建:本装置具体包括3种材料:镜片、硅胶垫片、蘑菇搭扣。用紫外固化胶将镜片边缘粘到一个圆环形硅胶垫片上(厚度1 mm,内直径7 mm,外直径10 mm)。两种蘑菇搭扣均剪成约12 mm×10 mm的矩形块状,用打孔器在中央打孔(直径8 mm)。将镜片-硅胶垫片组合用紫外固化胶固定在较厚的蘑菇搭扣(SJ3560)的背胶面。
② 佩戴:使用1%戊巴比妥钠按50 mg/kg体质量腹腔注射麻醉小鼠。用卡波姆滴眼液(博士伦)点眼保持湿润。用5-0缝线将已经打好孔的超薄型蘑菇搭扣(SJ4570)缝合在小鼠右眼眶周。最后,将LIM装置与缝合在小鼠眶周的蘑菇搭扣对合即可。佩戴塑料颈圈,防止小鼠抓挠镜片或眼球。对侧眼以妥布霉素眼膏(中山大学中山眼科中心)涂眼防止感染,并放在保暖垫上进行恢复。
③ 护理:每天均需打开搭扣,用无尘棉签清洁镜片,除非超薄型蘑菇搭扣缝线松脱需要重新缝合,其他情况无需再次麻醉小鼠。
主要指标为屈光度,次要指标为眼轴。于实验开始前,以及干预后第1、2、3和4周进行在体检测,具体方法如下。
1.4.1 屈光度检测
以0.5%复方托吡卡胺滴眼液点眼1次进行散瞳,2 min后检查瞳孔,瞳孔大小大于3 mm且对光反射消失则认为散瞳完全。由经过一定训练的两个验光师(未知动物组别)进行检影验光,取二者的平均值,若二者的差异大于2.00 D,则重新测量。
1.4.2 眼生物学参数测量
麻醉使用1%戊巴比妥钠按50 mg/kg体质量腹腔注射,麻醉成功后采用SD-OCT测量眼轴长度等眼生物学参数。先对右眼进行三次全眼扫描(1 000×5×2的线性B扫描),然后对左眼进行相同的检测[
统计学分析用Graphpad Prism 8.0进行。主要指标包括:各组各眼的屈光度和眼生物学参数的绝对值,各组两眼间屈光度的差值(右眼-左眼)较基线的变化值(简称屈光度的变化值),各组两眼间眼生物学参数的差值(右眼-左眼)较基线的变化值(简称眼生物学参数的变化值)。定量资料用Q-Q图进行正态性检验,若服从正态分布,用平均数±标准差进行统计描述。经残差图的检验方差齐性。各组内,左右眼进行配对t检验。对于时间序列,通过球形检验后,进行混合效应分析,以P < 0.05为因子有统计学意义,若发现时间和分组存在交互效应,选取时间点进行组间比较。3组间比较,当数据服从正态分布但不满足方差齐性时,使用Welch's ANOVA进行组间比较;当Welch's ANOVA有统计学差异时,采用Dunnett's T3检验进行两两比较,以双侧P < 0.05为差异有统计学意义。
经Q-Q图检验,各组双眼的屈光度和眼生物学参数的绝对值服从正态分布(
图2 两眼间屈光度差值和眼生物学参数差值的Q-Q图
Fig. 2 Q-Q Plots of interocular differences in refraction and ocular dimensions
A(2 week), B(4 week), refraction. C(2 week), D(4 week), axial length. E(2 week), F(4 week), anterior chamber depth. G(2 week), H(4 week), lens thickness. I(2 week), J(4 week), vitreous chamber depth. K(2 week), L(4 week), retinal thickness. M(2 week), N(4 week), corneal thickness.
Group | Eye | Time/week | n | Refraction/D | AL/mm | ACD/mm | LT/mm | VCD/mm | RT/mm | CT/mm |
---|---|---|---|---|---|---|---|---|---|---|
LIM | Right (LIM) | 0 | 15 | 5.20±1.49 | 3.091±0.048 | 0.293±0.036 | 1.821±0.034 | 0.733±0.030 | 0.169±0.017 | 0.075±0.009 |
Left (Fellow) | 5.12±1.21 | 3.090±0.058 | 0.296±0.039 | 1.819±0.035 | 0.725±0.028 | 0.176±0.008 | 0.074±0.008 | |||
Right (LIM) | 2 | 141) | 1.17±1.25 | 3.212±0.065 | 0.338±0.041 | 1.930±0.040 | 0.678±0.027 | 0.177±0.013 | 0.090±0.015 | |
Left (Fellow) | 3.63±0.95 | 3.158±0.072 | 0.324±0.049 | 1.921±0.046 | 0.665±0.036 | 0.173±0.010 | 0.073±0.008 | |||
Right (LIM) | 4 | 4 | -1.63±0.25 | 3.335±0.022 | 0.381±0.025 | 2.033±0.010 | 0.668±0.030 | 0.167±0.023 | 0.085±0.008 | |
Left (Fellow) | 1.94±0.24 | 3.279±0.031 | 0.376±0.016 | 2.038±0.012 | 0.622±0.017 | 0.169±0.012 | 0.074±0.007 | |||
PL | Right (PL) | 0 | 3 | 3.58±0.14 | 3.125±0.005 | 0.335±0.009 | 1.823±0.013 | 0.713±0.033 | 0.174±0.011 | 0.080±0.007 |
Left (Fellow) | 3.58±0.38 | 3.089±0.013 | 0.341±0.012 | 1.808±0.006 | 0.695±0.018 | 0.173±0.007 | 0.073±0.004 | |||
Right (PL) | 2 | 3 | 2.92±0.38 | 3.249±0.007 | 0.368±0.002 | 1.969±0.009 | 0.665±0.024 | 0.165±0.017 | 0.083±0.004 | |
Left (Fellow) | 3.17±0.14 | 3.211±0.011 | 0.328±0.046 | 1.954±0.003 | 0.680±0.055 | 0.171±0.020 | 0.078±0.005 | |||
Right (PL) | 4 | 3 | 1.67±0.52 | 3.320±0.003 | 0.391±0.023 | 2.037±0.014 | 0.636±0.034 | 0.169±0.006 | 0.087±0.003 | |
Left (Fellow) | 1.92±0.14 | 3.274±0.005 | 0.371±0.035 | 2.019±0.007 | 0.629±0.023 | 0.180±0.012 | 0.076±0.001 | |||
N | Right | 0 | 9 | 5.19±1.31 | 3.101±0.028 | 0.330±0.015 | 1.811±0.036 | 0.692±0.028 | 0.185±0.014 | 0.084±0.014 |
Left | 5.14±1.28 | 3.116±0.024 | 0.332±0.025 | 1.822±0.031 | 0.690±0.023 | 0.184±0.014 | 0.088±0.012 | |||
Right | 2 | 92) | 5.75±0.46 | 3.229±0.038 | 0.351±0.035 | 1.950±0.022 | 0.663±0.045 | 0.181±0.010 | 0.084±0.009 | |
Left | 5.69±0.53 | 3.241±0.024 | 0.359±0.024 | 1.957±0.023 | 0.653±0.024 | 0.187±0.009 | 0.085±0.008 | |||
Right | 4 | 9 | 3.50±0.90 | 3.304±0.047 | 0.376±0.023 | 2.029±0.032 | 0.634±0.016 | 0.174±0.015 | 0.091±0.009 | |
Left | 3.50±0.43 | 3.318±0.044 | 0.384±0.023 | 2.032±0.028 | 0.627±0.019 | 0.185±0.015 | 0.089±0.009 |
LIM, lens-induced myopia; PL, plano lens; N, normal control, AL, axial length; ACD, anterior chamber depth; LT, lens thickness; VCD, vitreous chamber depth; RT, retinal thickness; CT, corneal thickness. 1) n=15 for Refraction. 2) n=8 for Refraction.
离焦诱导2周时,LIM组内干预眼与对侧眼之间,屈光度(
图3 光学离焦性近视小鼠(LIM)、平光镜小鼠(PL)和正常对照小鼠(N)的屈光度和眼轴长变化
Fig. 3 Refraction and AL changes of LIM mice, PL mice and normal control mice
A: Experimental procedures and data collection flow diagram. B: Refractive development growth curves of lens-induced myopia (LIM) mice, plano lens (PL) mice and normal control (N) mice. Refraction indicated the change of difference between the right and left eyes from baseline. From the second week of intervention, the averaged refractions of the LIM group were significantly more myopic than those of the PL or N groups. The sample sizes of LIM, PL and N group were 10, 3, 4 in the first week, 15, 3, 8 in the second week, 10, 3, 4 in the third week, 4, 3, 9 in the fourth week, respectively. C: Ocular axial length (AL) development growth curves of LIM mice, PL mice and normal mice. AL indicated the change of difference between the right and left eyes from baseline. After at least one week of intervention, the averaged AL of the LIM group were significantly longer than those of the PL or N groups. The sample sizes of LIM, PL and N group were 9, 3, 4 in the first week, 14, 3, 9 in the second week, 9, 3, 4 in the third week, 4, 3, 9 in the fourth week, respectively. D: Bar charts summarizing refractions of lens induced eyes and fellow eyes in LIM mice (n=15) and PL mice (n=3), and both eyes in normal mice (n=8) after 2-week intervention. In LIM group, lens induced eyes were more myopic than the fellow eyes. E: Grouped data show that the change of interocular differences in refraction from baseline in LIM mice (n=15) were significantly more myopic shifts as compared to those in PL mice (n=3) and normal mice (n=8). F: Bar charts summarizing AL of lens induced eyes and fellow eyes in LIM mice (n=14 and PL mice (n=3), and both eyes in normal mice (n=9) after 2-week intervention. In LIM group, lens induced eyes had longer AL than the fellow eyes. G: Axial elongation in LIM mice (n=14) was significantly larger than that in PL mice (n=3) and normal mice (n=9). 1) P < 0.05, 2) P < 0.01, 3) P < 0.001, 4) P < 0.000 1, Dunnett's T3-adjusted multiple comparison, LIM vs. PL. 5) P < 0.05, 6) P < 0.01, 7) P < 0.001, 8) P < 0.000 1, Dunnett's T3-adjusted multiple comparison, LIM vs. normal control. 9) P < 0.05, 10) P < 0.01, 11) P < 0.001, 12) P < 0.000 1, paired t-test, Left vs. Right eyes.
经Q-Q图检验,各组两眼间屈光度差异的变化值服从正态分布。组内比较,LIM组内,离焦诱导2周,两眼间屈光度差异变化的均值为(-2.55±1.54) D(t=6.430, P<0.000 1;
Group | Time/ week | n | Refraction/D | AL/mm | ALRefraction/(mm/D) | ACD/mm | LT/mm | VCD/mm | RT/mm | CT/mm |
---|---|---|---|---|---|---|---|---|---|---|
LIM | 2 | 148) | -2.55±1.544) | 0.051±0.0244) | -0.020 | 0.015±0.04 3 | 0.005±0.009 | 0.003±0.051 | 0.011±0.020 | 0.016±0.0202) |
4 | 4 | -3.31±0.134) | 0.055±0.0152) | -0.017 | 0.001±0.02 1 | 0.000±0.002 | 0.029±0.052 | 0.016±0.026 | 0.008±0.010 | |
PL Control | 2 | 3 | -0.25±0.75 | 0.003±0.006 | -0.012 | 0.045±0.052 | 0.001±0.006 | -0.034±0.071 | -0.007±0.010 | -0.003±0.013 |
4 | 3 | -0.25±0.66 | 0.011±0.012 | -0.044 | 0.026±0.046 | 0.002±0.006 | -0.010±0.025 | -0.012±0.010 | 0.005±0.007 | |
Normal Control | 2 | 99) | 0.00±0.38 | 0.003±0.011 | - | -0.006±0.022 | 0.004±0.009 | 0.008±0.032 | -0.007±0.0091) | 0.003±0.011 |
4 | 9 | -0.06±1.21 | 0.001±0.004 | -0.017 | -0.006±0.019 | 0.008±0.0072) | 0.005±0.032 | -0.011±0.019 | 0.007±0.011 | |
2W, ANOVA, P5) | - | - | 0.004 8 | 0.000 1 | - | 0.220 6 | 0.605 0 | 0.669 9 | 0.084 0 | 0.155 6 |
2W, LIM vs PL, P6) | - | - | 0.014 0 | <0.000 1 | - | - | - | - | - | - |
2W, LIM vs N, P7) | - | - | <0.000 1 | <0.000 1 | - | - | - | - | - | - |
4W, ANOVA, P5) | - | - | 0.000 7 | 0.012 2 | - | 0.550 2 | 0.085 6 | 0.491 6 | 0.220 3 | 0.878 9 |
4W,LIM vs PL, P6) | - | - | 0.020 6 | 0.013 7 | - | - | - | - | - | - |
4W, LIM vs N, P7) | - | - | <0.000 1 | 0.008 2 | - | - | - | - | - | - |
LIM, lens-induced myopia; PL, plano lens; N, normal control; AL, axial length; ACD, anterior chamber depth; LT, lens thickness; VCD, vitreous chamber depth; RT, retinal thickness; CT, corneal thickness. Interocular differences indicated the change of difference between the right and left eyes from baseline. 1) P < 0.05, 2) P < 0.01, 3) P < 0.001, 4) P < 0.0001, paired t-test, Right vs Left eyes. 5) Welch's ANOVA, LIM mice vs. PL mice vs. normal control mice. 6) Dunnett's T3-adjusted multiple comparison, LIM mice vs. PL mice. 7) Dunnett's T3-adjusted multiple comparison, LIM mice vs. normal control mice. 8) n=15 for Refraction. 9) n=8 for Refraction.
混合效应分析结果显示,时间和分组因素具有交互效应(P<0.000 1),时间效应和分组因素均具有统计学意义(二者P值均<0.000 1),随干预时间延长,干预组近视漂移程度增加。从干预第1周起,各时间点进行组间比较,3组间差异具有统计学意义(Welch's ANOVA,第1周,F=4.715, P=0.048 3;第2周,F=16.55, P=0.004 8;第3周F=10.23, P=0.012 5;第4周,F=53.63, P=0.000 7),进一步两两比较,LIM组的屈光度变化值与PL组或N组相比,除了诱导1周的LIM组和N组相比没有差异,其他组间差异均具有统计学意义, 即LIM组较PL组或N组更趋向近视(
经Q-Q图检验,各组两眼间眼生物下的变化值服从正态分布。两眼间眼生物学参数变化值的具体数值如
2.3.1 眼
轴 各组两眼间眼轴差异的变化值如
混合效应分析结果显示,时间和分组因素具有交互效应(P<0.000 1),时间效应和分组因素均具有统计学意义(二者P值均<0.000 1)。从干预第1周起,各时间点进行组间比较均具有统计学意义(Welch's ANOVA,第1周,F=14.56, P=0.002 5;第2周,F=22.25, P=0.000 1;第3周F=29.00, P=0.002;第4周,F=20.60, P=0.012 2),进一步两两比较,LIM组的眼轴变化值与PL组或N组相比,组间差异均具有统计学意义,LIM组眼轴增长值较PL组或N组更大(
2.3.2 其余眼生物学参数
组内比较,LIM组内2周时两眼间角膜厚度差异相对基线变厚,均值为(0.016±0.020) mm (t=3.029, P=0.009 7),N组内2周时右眼视网膜厚度相对变薄(0.007±0.009) mm (t=2.308, P=0.049 9),4周右眼晶状体厚度相对变厚(0.008±0.007) mm (t=3.534, P=0.007 7),其余参数均无明显变化。组间比较,组间差异无统计学意义(
本文描述了一种新的小鼠光学离焦性近视模型的建立方法,仅需诱导2周,与平光镜组和空白对照相比,屈光度显著向近视漂移,眼轴显著增长。建立LIM模型简所需的材料均可以直接购买,搭建简单,诱导装置可拆卸。
近视的主要体征为屈光度下降和眼轴增长。由于小鼠没有调节[
眼轴的实验结果也和屈光度一致。通过2周的离焦诱导,LIM组内干预眼眼轴较对侧增长约0.051 mm;组间比较,LIM组眼轴较PL组或N组分别增长0.048 mm、0.047 mm。而本实验所用OCT测量误差在0.018 mm左右[
至于其他眼生物学参数,角膜厚度、晶状体厚度、视网膜厚度的变化在0.007-0.017 mm之间,虽然出现了统计学差异,但结合上述,其测量误差为0.018 mm[
本次实验造模观察时间为4周,每天均检察并清洁护理镜片。通过观察,各组镜片在4周内都能保持清洁,无明显污物沉积。颈圈的佩戴也减少了小鼠抓挠镜片,通过在裂隙灯下观察没有明显的划痕。观察结果表明,小鼠干预眼被形觉剥夺的可能性较低。
目前已有的小鼠LIM模型的建立方法大致分为3种:①胶合:直接用胶水将镜片固定在眶周[
本文设计的这种新的小鼠LIM模型的建立方法,镜片可以拆卸,可以每天清洁,减少形觉剥夺的风险,也可以根据实验需求,对诱导眼叠加其他干预。此外,建立本文所述搭扣式LIM模型的材料均可以直接购买,搭建较为简单,耗时短,装置总体质量量较轻;本实验诱导时间相对较短,2周即可诱导出相对近视,眼轴相对增长超过50μm。
不同的实验动物各有优缺点。用于构建LIM模型的实验动物主要包括:猴[
小鼠遗传背景清晰,基因可调控,诱导时间短,繁殖速度快,饲养管理方便。在近视模型实验中,小鼠造模时间短,其基因组90%以上与人类有同源性,眼生理指标相较于人眼具有参考价值。并且在已有的近视模型动物中,小鼠是最小的哺乳动物,无更小的哺乳动物可替代。小鼠在近视动物模型实验中具有巨大优势。因此本研究针对小鼠LIM模型,创新性地进行了改造,该模型具有材料可及、可拆卸的特点,并且后续通过测量屈光度和眼轴对该模型进行验证。
本研究的主要局限在于,观察时间较短,报告了干预4周的结果。从
本研究描述了一种基于搭扣设计的可拆卸的小鼠光学离焦性近视模型,并通过测量屈光度和眼轴验证了该模型。通过2周的光学离焦诱导可以诱导出相对近视。该LIM模型搭建简易,可为近视研究的动物实验的模型构建提供参考。
Troilo D, 3rdSmith EL, Nickla DL, et al. IMI - report on experimental models of emmetropization and myopia[J]. Invest Ophthalmol Vis Sci, 2019, 60(3):M31-M88. [百度学术]
Morgan IG, Ohno-Matsui K, Saw SM. Myopia[J]. Lancet, 2012, 379(9827):1739-1748. [百度学术]
Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050[J]. Ophthalmology, 2016, 123(5):1036-1042. [百度学术]
Wu H, Chen W, Zhao F, et al. Scleral hypoxia is a target for myopia control[J]. Proc Natl Acad Sci U S A, 2018, 115(30):E7091-E7100. [百度学术]
Raviola E, Wiesel TN. An animal model of myopia[J]. N Engl J Med, 1985, 312(25):1609-1615. [百度学术]
Wang JC, Chun RK, Zhou YY, et al. Both the central and peripheral retina contribute to myopia development in chicks[J]. Ophthalmic Physiol Opt, 2015, 35(6):652-662. [百度学术]
Wildsoet CF, McFadden SA. Optic nerve section does not prevent form deprivation-induced myopia or recovery from it in the mammalian eye[J]. Invest Ophthalmol Vis Sci, 2010, 51(13):1737. [百度学术]
Zhu X, Du Y, Li D, et al. Aberrant TGF-β1 signaling activation by MAF underlies pathological lens growth in high myopia[J]. Nat Commun, 2021, 12(1):2102. [百度学术]
Tkatchenko TV, Shen Y, Tkatchenko AV. Mouse experimental myopia has features of primate myopia[J]. Invest Ophthalmol Vis Sci, 2010, 51(3):1297-1303. [百度学术]
Tkatchenko TV, Troilo D, Benavente-Perez A, et al. Gene expression in response to optical defocus of opposite signs reveals bidirectional mechanism of visually guided eye growth[J]. PLoS Biol, 2018, 16(10):e2006021. [百度学术]
Jiang L, Garcia MB, Hammond D, et al. Strain-dependent differences in sensitivity to myopia-inducing stimuli in guinea pigs and role of choroid[J]. Invest Ophthalmol Vis Sci, 2019, 60(4):1226-1233. [百度学术]
Choh V, Lew MY, Nadel MW, et al. Effects of interchanging hyperopic defocus and form deprivation stimuli in normal and optic nerve-sectioned chicks[J]. Vision Res, 2006, 46(6-7):1070-1079. [百度学术]
Zhou X, Pardue MT, Iuvone PM, et al. Dopamine signaling and myopia development: What are the key challenges[J]. Prog Retin Eye Res, 2017, 61:60-71. [百度学术]
Allen RS, Bales K, Feola A, et al. In vivo structural assessments of ocular disease in rodent models using optical coherence tomography[J]. J Vis Exp, 2020, 2020 (161):e61588. [百度学术]
Jiang X, Kurihara T, Ikeda SI, et al. Inducement and evaluation of a murine model of experimental myopia[J]. J Vis Exp, 2019, 2019(143):e58822. [百度学术]
Hn P, Qazi Y, Tan C, et al. Assessment of axial length measurements in mouse eyes[J]. Optom Vis Sci, 2012, 89(3):296-303. [百度学术]
Jiang X, Kurihara T, Kunimi H, et al. A highly efficient murine model of experimental myopia[J]. Sci Rep, 2018, 8(1):2026. [百度学术]
Gu Y, Xu B, Feng C, et al. A head-mounted spectacle frame for the study of mouse lens-induced myopia[J]. J Ophthalmol, 2016, 2016:8497278. [百度学术]
Zhou X, Wang W, Lu F, et al. A comparative gene expression profile of the whole eye from human, mouse, and guinea pig[J]. Mol Vis, 2007, 13:2214-2221. [百度学术]
130
浏览量
206
下载量
0
CSCD
相关文章
相关作者
相关机构