1.中山大学附属第一医院器官移植科//广东省器官捐献与移植免疫重点科实验室//广东省器官移植国际科技合作基地,广东 广州510080
2.中山大学附属第一医院检验科,广东 广州510080
3.中山大学肿瘤防治中心检验科,广东 广州510060
游莹,硕士生,研究方向:感染免疫及肿瘤免疫,E-mail: youy37@mail2.sysu.edu.cn
纸质出版日期:2023-01-20,
收稿日期:2022-08-05,
扫 描 看 全 文
游莹,梅美华,谭宁歆等.DNA损伤修复基因FANCI与肝癌预后和免疫浸润相关性[J].中山大学学报(医学科学版),2023,44(01):51-62.
YOU Ying,MEI Mei-hua,TAN Ning-xin,et al.Correlation of DNA Damage Repair Gene FANCI with Prognosis and Immune Infiltration of Hepatocellular Carcinoma[J].Journal of Sun Yat-sen University(Medical Sciences),2023,44(01):51-62.
游莹,梅美华,谭宁歆等.DNA损伤修复基因FANCI与肝癌预后和免疫浸润相关性[J].中山大学学报(医学科学版),2023,44(01):51-62. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2023.0108.
YOU Ying,MEI Mei-hua,TAN Ning-xin,et al.Correlation of DNA Damage Repair Gene FANCI with Prognosis and Immune Infiltration of Hepatocellular Carcinoma[J].Journal of Sun Yat-sen University(Medical Sciences),2023,44(01):51-62. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2023.0108.
目的
2
探究DNA损伤修复基因
FANCI
在肝癌中的表达水平,及其与预后、临床分期、免疫浸润的关系。
方法
2
在本研究中,使用TCGA、GTEx、TIMER2.0及qRT-PCR法、蛋白质印迹法和免疫组织化学法研究FANCI在肝癌中的表达及其与不同临床分期之间的相关性;使用Kaplan-Meier Plotter数据库分析FANCI与肝癌预后的关系;使用TISIDB数据库探索FANCI与肝癌免疫细胞浸润及免疫检查点的关系;使用STRING数据库探索FANCI相结合的蛋白;使用TCGA及GTEx数据库进行GO及KEGG富集分析;通过细胞实验探索了FANCI在肝癌中的作用。
结果
2
与正常组织相比,肝癌组织FANCI的mRNA和蛋白表达水平上调(
P
<
0.001);高表达FANCI的肝癌患者预后较差(
P
<
0.001);肝癌组织中FANCI的表达与组织活化的CD4
+
T细胞数目、Th2细胞数目及免疫检查点基因的表达呈正相关,且FANCI高表达组的B细胞及巨噬细胞浸润水平明显较低(
P
<
0.01);GO及KEGG富集分析显示FANCI相关基因富集在氨基酸跨膜转运体活性等多种生物过程中;细胞实验发现敲低FANCI后,肝癌的增殖、侵袭及迁移能力下降(
P
<
0.05)。
结论
2
FANCI在肝癌组织中高表达,可能起抑制抗肿瘤免疫的作用,并作用于氨基酸跨膜转运等通路,与不良预后相关,敲低FANCI后,肝癌的增殖、侵袭及迁移能力得到抑制。
Objective
2
To evaluate the expression level of DNA damage repair gene
FANCI
in hepatocellular carcinoma (HCC) and its relationship with prognosis, clinical stage and immune infiltration.
Methods
2
In this study, TCGA, GTEx, TIMER2.0, HPA database and qRT-PCR, western blot and immunohistochemistry were used to analyze the expression of FANCI in HCC and its correlation with different clinical stages; Kaplan-Meier Plotter database was used to explore the relationship between FANCI and the prognosis of HCC; the TISIDB database was used to analyze the relationship between FANCI and immune cell infiltration and immune checkpoints in HCC; the STRING database was used to detect the protein binding with FANCI; the TCGA and GTEx databases were used for GO and KEGG enrichment analysis; Cell experiments were used to explore the role of FANCI in HCC.
Results
2
Compared with normal tissues, the mRNA and protein expression levels of FANCI in tumor tissues were up-regulated (
P
<
0.001); and HCC patients with high expression of FANCI had poor prognosis (
P
<
0.001); the expression of FANCI in tumor tissues was positively correlated with the number of activated CD4
+
T cells, the number of Th2 cells and the expression of immune checkpoints, and B-cell and macrophage infiltration was significantly lower in the FANCI high expression group (
P
<
0.01); GO and KEGG enrichment analysis showed that FANCI-related genes were enriched in various biological processes such as amino acid transmembrane transporter activity; Cell experiments showed that knockdown of FANCI could inhibit the proliferation, invasion and migration of HCC (
P
<
0.05).
Conclusions
2
FANCI is highly expressed in hepatocellular carcinoma tissues, which may play a role in suppressing anti-tumor immunity and acting on pathways such as amino acid transmembrane transport, and is associated with poor prognosis. The proliferation, invasion and migration ability of hepatocellular carcinoma are inhibited after knocking down FANCI.
Fanconi贫血补充组Ⅰ肝癌免疫浸润免疫检查点
FANCIhepatocellular carcinomaimmune infiltrationimmune checkpoints
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. Ca-a Cancer Journal for Clinicians, 2021, 71(3): 209-249.
汪根树. 利用综合治疗措施进一步提高肝癌肝移植疗效[J]. 器官移植, 2021, 12(3): 249-256.
Wang GS. Improving efficacy of liver transplantation for hepatocellular carcinoma by comprehensive treatment[J]. Organ Transplant, 2021, 12(3): 249-256.
De Stefano F, Chacon E, Turcios L, et al. Novel biomarkers in hepatocellular carcinoma[J]. Digestive and Liver Disease, 2018, 50(11): 1115-1123.
Wang T, Zhang KH. New Blood Biomarkers for the Diagnosis of AFP-Negative Hepatocellular Carcinoma[J]. Frontiers in Oncology, 2020, 10: 1316.
Lemonidis K, Arkinson C, Rennie ML, et al. Mechanism, specificity, and function of FANCD2-FANCI ubiquitination and deubiquitination[J]. Febs Journal, 2022, 289(16): 4811-4829.
Tsui V, Crismani W. The fanconi anemia pathway and fertility[J]. Trends in Genetics, 2019, 35(3): 199-214.
Kottemann MC, Smogorzewska A. Fanconi anaemia and the repair of Watson and Crick DNA crosslinks[J]. Nature, 2013, 493(7432): 356-363.
Liu X, Liu X, Han X. FANCI may serve as a prognostic biomarker for cervical cancer A systematic review and meta-analysis[J]. Medicine, 2021, 100(51).
Ye G, Liu Y, Huang L, et al. miRNA-218/FANCI is associated with metastasis and poor prognosis in lung adenocarcinoma: a bioinformatics analysis[J]. Ann Transl Med, 2021, 9(16): 1298.
Han B, Yang X, Zhang P, et al. DNA methylation biomarkers for nasopharyngeal carcinoma[J]. Plos One, 2020, 15(4): :e0230524.
Li T, Fu J, Zeng Z, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells[J]. Nucleic Acids Research, 2020, 48(W1): W509-W514.
Vivian J, Rao AA, Nothaft FA, et al. Toil enables reproducible, open source, big biomedical data analyses[J]. Nature Biotechnology, 2017, 35(4): 314-316.
Lanczky A, Gyorffy B. Web-Based Survival Analysis Tool Tailored for Medical Research (KMplot): development and implementation[J]. J Med Internet Res, 2021, 23(7): e27633..
Ru B, Wong CN, Tong Y, et al. TISIDB: an integrated repository portal for tumor-immune system interactions[J]. Bioinformatics, 2019, 35(20): 4200-4202.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12): 500..
Dubois EL, Guitton-Sert L, Beliveau M, et al. A Fanci knockout mouse model reveals common and distinct functions for FANCI and FANCD2[J]. Nucleic Acids Research, 2019, 47(14): 7532-7547.
Fierheller CT, Guitton-Sert L, Alenezi WM, et al. A functionally impaired missense variant identified in French Canadian families implicates FANCI as a candidate ovarian cancer-predisposing gene[J]. Genome Medicine, 2021, 13(1): 186.
Zhang J, Wang J, Wu J, et al. UBE2T regulates FANCI monoubiquitination to promote NSCLC progression by activating EMT[J]. Oncology Reports, 2022, 48(2): 139.
Chen W, Gao C, Liu Y, et al. Bioinformatics Analysis of Prognostic miRNA Signature and Potential Critical Genes in Colon Cancer[J]. Frontiers in Genetics, 2020, 11: 478.
Xie S, Jiang X, Zhang J, et al. Identification of significant gene and pathways involved in HBV-related hepatocellular carcinoma by bioinformatics analysis[J]. Peerj, 2019, 7: e7408.
Chen J, Rajasekaran M, Xia H, et al. The microtubule-associated protein PRC1 promotes early recurrence of hepatocellular carcinoma in association with the Wnt/beta-catenin signalling pathway[J]. Gut, 2016, 65(9): 1522-1534.
Ghaderi-Zefrehi H, Rezaei M, Sadeghi F, et al. Genetic polymorphisms in DNA repair genes and hepatocellular carcinoma risk[J]. DNA Repair, 2021, 107: 103196.
Lin P, Gao R-Z, Wen R, et al. DNA damage repair profiles alteration characterize a hepatocellular carcinoma subtype with unique molecular and clinicopathologic Features[J]. Frontiers in Immunology, 2021, 12: 715460.
Nalepa G, Clapp DW. Fanconi anaemia and cancer: an intricate relationship[J]. Nature Reviews Cancer, 2018, 18(3): 168-185.
Wang R, Wang S, Dhar A, et al. DNA clamp function of the monoubiquitinated Fanconi anaemia ID complex[J]. Nature, 2020, 580(7802): 278-282.
Curigliano G. Gyneco-oncological genomics and emerging biomarkers for cancer treatment with immune-checkpoint inhibitors[J]. Seminars in Cancer Biology, 2018, 52: 253-258.
Gao S, Hsu T-W, Li MO. Immunity beyond cancer cells: perspective from tumor tissue[J]. Trends in Cancer, 2021, 7(11): 1010-1019.
Zhou L, Zhang L, Chen S, et al. Elevated neddylation pathway promotes Th2 cells infiltration by transactivating STAT5A in hepatocellular carcinoma[J]. Frontiers in Oncology, 2021, 11: 709170.
Hung MH, Lee JS, Ma C, et al. Tumor methionine metabolism drives T-cell exhaustion in hepatocellular carcinoma[J]. Nature Communications, 2021, 12(1): 1455.
Yu J, Xia X, Dong Y, et al. CYP1A2 suppresses hepatocellular carcinoma through antagonizing HGF/MET signaling[J]. Theranostics, 2021, 11(5): 2123-2136.
Bhutia YD, Babu E, Ramachandran S, et al. Amino acid transporters in cancer and their relevance to "Glutamine Addiction": novel targets for the design of a new class of anticancer drugs[J]. Cancer Research, 2015, 75(9): 1782-1788.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构