1.中山大学附属第一医院放射科,广东 广州 510080
2.中山大学附属第一医院神经科,广东 广州 510080
曾文婷,硕士生,研究方向:神经系统影像诊断,E-mail:zengwt23@mail2.sysu.edu.cn
纸质出版日期:2023-01-20,
收稿日期:2022-09-01,
扫 描 看 全 文
曾文婷,赵静,胡曼诗等.结构性MRI测量对脊髓小脑共济失调3型的诊断价值[J].中山大学学报(医学科学版),2023,44(01):106-114.
ZENG Wen-ting,ZHAO Jing,HU Man-shi,et al.Diagnostic Value of Structural MRI in Spinocerebellar Ataxia Type 3[J].Journal of Sun Yat-sen University(Medical Sciences),2023,44(01):106-114.
曾文婷,赵静,胡曼诗等.结构性MRI测量对脊髓小脑共济失调3型的诊断价值[J].中山大学学报(医学科学版),2023,44(01):106-114. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2023.0114.
ZENG Wen-ting,ZHAO Jing,HU Man-shi,et al.Diagnostic Value of Structural MRI in Spinocerebellar Ataxia Type 3[J].Journal of Sun Yat-sen University(Medical Sciences),2023,44(01):106-114. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2023.0114.
目的
2
本研究拟探讨结构性MRI测量对脊髓小脑共济失调3型(SCA3)的诊断价值,并进一步评估其与疾病的严重程度及病程的相关性。
方法
2
前瞻性收集2018 年5月至2021年11月于中山大学附属第一医院经基因诊断确诊的SCA3患者81例(症状组(sym-SCA3):59,症状前组(pre-SCA3):22,同时收集年龄、性别匹配的正常对照(HCs)35例。受试者均采集MRI结构像(3D T1WI MPRAGE)并收集其相应的临床资料。三位具不同临床经验的观察者分别通过第三方软件测量双侧小脑上、中、下脚宽度、脑桥及不同平面脊髓前后径(平枕骨大孔、颈
3-5
椎体上缘),其中一位观察者2个月后对上述指标进行重复测量。分别计算观察者内及观察者间可重复性,采用单因素方差分析、秩和检验、ROC曲线及随机森林方法评估上述指标对SCA3的诊断价值,并与临床资料进行相关性分析。
结果
2
基于形态学MRI脑结构测量指标,无论是观察者内或观察者间,均具有较高的可重复性且不依赖于观察者的临床经验,其中双侧小脑上、中脚具有最高的一致性。HCs、pre-SCA3和sym-SCA3三组的双侧小脑上、中、下脚、脑桥及脊髓前后径(除颈5椎体上缘水平)分别依次减小并具有统计学差异(
P
<
0.017)。ROC示左侧小脑中脚对pre-SCA3的诊断价值最高(AUC=0.911),其敏感度、特异度和cut-off值分别为85.7%,95.5%和10.15 mm,而右侧小脑上脚对sym-SCA3的诊断价值最高(AUC=0.999),其临界值为 2.62 mm, 敏感度和特异度分别是100%和98.3%。进一步,基于上述指标的随机森林模型区分三组同样有着很高的诊断效能(AUC=0.970,特异度=93.1%),其中左侧小脑中脚对模型的贡献度最大。此外,相关分析表明上述指标同SARA和病程存在中等程度或显著负相关(
P
<
0.05)。
结论
2
基于形态学MRI的脑结构测量可重复性好、不依赖于临床经验,可以帮助诊断SCA3并预测疾病的严重程度和病程,左侧小脑中脚及右侧小脑上脚分别用于预测pre-SCA3 和sym-SCA3价值最优。由此,本研究推荐临床纳入MRI脑结构测量协助评估SCA3。
Objective
2
To explore the role of structural MRI in the diagnosis of spinocerebellar ataxia type 3 (SCA3) and further evaluate its correlation with disease severity and disease duration.
Methods
2
We prospectively enrolled 81 genetically diagnosed SCA3 patients [59 symptomatic (sym-SCA3) and 22 pre-symptomatic (pre-SCA3)] and 35 age- and sex-matched healthy controls (HCs). MRI structural images (3D T1 MPRAGE) and clinical data of all subjects were collected. Three observers with different radiological experience measured the width of the superior, middle and inferior cerebellar peduncle (SCP, MCP and ICP), the anterior-posterior diameters of the pons and spinal cord at the levels of the foramen magnum and upper edge of the 3rd-5th cervical vertebra. One observer performed the measurements again 2 months later to assess for the intra- and inter-observer reliability, respectively. One-way ANOVA, rank-sum test, ROC curve and Random Forest were used to evaluate the diagnostic value of the above metrics for SCA3, and the correlation between the metrics and clinical variables was analyzed.
Results
2
Not depending on the radiological experience, the metrics based on morphological MRI showed high intra- and inter-observer reliability, among which bilateral superior and middle cerebellar peduncles performed best. The diameters of bilateral SCP, MCP, ICP, pons and spinal cord (except spinal cord at the level of the upper edge of the 5th cervical vertebra) decreased successively in HCs, pre-SCA3 and sym-SCA3 with a statistical difference (
P
<
0.017). ROC analysis revealed that the left MCP had the highest diagnostic value for pre-SCA3 (AUC=0.911), with sensitivity, specificity and a cut-off value of 85.7%, 95.5% and 10.15 mm, respectively. In contrast, the right SCP had the highest diagnostic value for sym-SCA3 (AUC=0.999), with sensitivity, specificity and a cut-off value of 100%, 98.3% and 2.62 mm, respectively. The Random Forest model based on the above metrics also had high diagnostic efficiency (AUC
=
0.970, specificity=93.1%), and the left MCP contributed the most. Correlation analysis showed that the above metrics had a significantly or moderately negative correlation with the Scale for the Assessment and Rating of Ataxia (SARA) and disease duration (
P
<
0.05).
Conclusion
2
Not depending on radiological experience, measurements of brain structure based on morphological MRI are reliable, which can help diagnose SCA3 and predict disease severity and duration. The left MCP and the right SCP perform best for predicting pre-SCA3 and sym-SCA3, respectively. Therefore, the structural MRI is recommended for assisting the clinical diagnosis of SCA3.
脊髓小脑共济失调3型MRI脑结构测量诊断
spinocerebellar ataxia type 3 (SCA3)MRIbrain structural measurementdiagnosis
Borbolla-Jiménez FV, Del Prado-Audelo ML, Cisneros B, et al. New Perspectives of Gene Therapy on Polyglutamine Spinocerebellar Ataxias: From Molecular Targets to Novel Nanovectors[J]. Pharmaceutics, 2021, 13(7).
Klockgether T, Mariotti C, Paulson HL. Spinocerebellar ataxia[J]. Nat Rev Dis Primers, 2019, 5(1): 24.
Schmitz-Hübsch T, Du Montcel ST, Baliko L, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale[J]. Neurology, 2006, 66(11): 1717-1720.
Wan N, Chen Z, Wan L, et al. MR Imaging of SCA3/MJD[J]. Front Neurosci, 2020, 14: 749.
Maas RP, Van Gaalen J, Klockgether T, et al. The preclinical stage of spinocerebellar ataxias[J]. Neurology, 2015, 85(1): 96-103.
Rezende TJR, De Paiva JLR, Martinez ARM, et al. Structural signature of SCA3: from presymptomatic to late disease stages[J]. Ann Neurol, 2018, 84(3): 401-408.
Jacobi H, Reetz K, Du Montcel ST, et al. Biological and clinical characteristics of individuals at risk for spinocerebellar ataxia types 1, 2, 3, and 6 in the longitudinal RISCA study: analysis of baseline data[J]. Lancet Neurol, 2013, 12(7): 650-658.
Wu X, Liao X, Zhan Y, et al. Microstructural Alterations in asymptomatic and symptomatic patients with spinocerebellar ataxia type 3: a tract-based spatial statistics study[J]. Front Neurol, 2017, 8: 714.
Metwally MI, MaABasha, Abdelhamid GA, et al. Neuroanatomical MRI study: reference values for the measurements of brainstem, cerebellar vermis, and peduncles[J]. Br J Radiol, 2021, 94(1120): 20201353.
Higashi M, Ozaki K, Hattori T, et al. A diagnostic decision tree for adult cerebellar ataxia based on pontine magnetic resonance imaging[J]. J Neurol Sci, 2018, 387: 187-195.
Quattrone A, Nicoletti G, Messina D, et al. MR imaging index for differentiation of progressive supranuclear palsy from Parkinson disease and the Parkinson variant of multiple system atrophy[J]. Radiology, 2008, 246(1): 214-221.
Reetz K, Rodríguez-Labrada R, Dogan I, et al. Brain atrophy measures in preclinical and manifest spinocerebellar ataxia type 2[J]. Ann Clin Transl Neurol, 2018, 5(2): 128-137.
Braga-Neto P, Godeiro-Junior C, Dutra LA, et al. Translation and validation into Brazilian version of the Scale of the Assessment and Rating of Ataxia (SARA)[J]. Arq Neuropsiquiatr, 2010, 68(2): 228-230.
Sobana SA, Huda F, Hermawan R, et al. Brain MRI volumetry analysis in an indonesian family of SCA 3 patients: a case-based study[J]. Front Neurol, 2022, 13: 912592.
Park YW, Joers JM, Guo B, et al. Assessment of Cerebral and cerebellar white matter microstructure in spinocerebellar ataxias 1, 2, 3, and 6 using diffusion MRI[J]. Front Neurol, 2020, 11: 411.
Peng H, Liang X, Long Z, et al. Gene-related cerebellar neurodegeneration in SCA3/MJD: a case-controlled imaging-genetic study[J]. Front Neurol, 2019, 10: 1025.
Fahl CN, Branco LM, Bergo FP, et al. Spinal cord damage in Machado-Joseph disease[J]. Cerebellum, 2015, 14(2): 128-132.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构