1.大理大学第一附属医院肾脏内科,云南 大理 671000
2.大理大学临床医学院,云南 大理 671000
3.大理大学第一附属医院超声科,云南 大理 671000
4.大理大学第一附属医院泌尿外科,云南 大理 671000
5.大理大学基础医学院,云南 大理 671000
洪文娟,硕士,主治医师,研究方向:肾病综合征的防治及其机制,E-mail:657526361@qq.com
纸质出版日期:2023-01-20,
收稿日期:2022-07-26,
扫 描 看 全 文
洪文娟,李红俊,邹久林等.卡格列净对肾病综合征的治疗作用及超声评价[J].中山大学学报(医学科学版),2023,44(01):71-77.
HONG Wen-juan,LI Hong-jun,ZOU Jiu-lin,et al.Therapeutic Effect of Canagliflozin on Nephrotic Syndrome and Its Ultrasonic Evaluation[J].Journal of Sun Yat-sen University(Medical Sciences),2023,44(01):71-77.
洪文娟,李红俊,邹久林等.卡格列净对肾病综合征的治疗作用及超声评价[J].中山大学学报(医学科学版),2023,44(01):71-77. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2023.0116.
HONG Wen-juan,LI Hong-jun,ZOU Jiu-lin,et al.Therapeutic Effect of Canagliflozin on Nephrotic Syndrome and Its Ultrasonic Evaluation[J].Journal of Sun Yat-sen University(Medical Sciences),2023,44(01):71-77. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2023.0116.
目的
2
探讨抗糖药物卡格列净(CGLZ)对阿霉素所致肾病综合征(NS)模型大鼠的治疗作用,以及超声造影(CEUS)联合彩色多普勒血流显像(CDFI)在治疗过程中的评价作用。
方法
2
56 只SD 雄性大鼠随机分为正常组(NG)、模型组(MG)、泼尼松(PAT)组(PG)、小剂量CGLZ 组(LSCG)、大剂量CGLZ 组(HSCG)、小剂量CGLZ + PAT 组(LUCG)和大剂量CGLZ +PAT 组(HUCG),每组8 只。采用阿霉素2 次尾静脉注射法诱导制备NS 大鼠模型,以常规PAT 治疗为参照予以每日药物灌胃处理,连续6周。在灌胃前1 d和灌胃2、4、6周末分别行24h-UTP 定量检测,灌胃6周末行右肾动脉CDFI 及右肾CEUS 检查,次日取腹主动脉血行血清学检测。
结果
2
与NG 大鼠的检测指标相比,MG 大鼠的24 h-UTP 升高(
P
<0.01),血清ALB 降低,TG、TC、LDL 升高(
P
<0.01),CDFI 显示RRCT 变薄(
P
<0.01),肾动脉血流指标RA-PI、RA-RI、RA-S/D 升高(
P
<0.05),CEUS 图像显示TIC 曲线参数TTP、AT、AUC 升高,DPI、A 下降(
P
<0.01)。药物治疗后,与MG 大鼠的检测指标相比,24 h-UTP 检测结果显示2周后仅LSCG 组下降(
P
<0.01),6周后各药物组均明显下降(
P
<0.01);血清学检测结果显示6周后所有CGLZ 治疗组大鼠的血清ALB 升高(
P
<0.05),LSCG 大鼠的TG 下降(
P
<0.01),LUCG 大鼠的TC、LDL 下降(
P
<0.05);CDFI 检查显示所有CGLZ 治疗组大鼠肾脏的RRCT 变薄程度减轻(
P
<0.01),LSCG 大鼠的RA-PI、PG 大鼠的RA-RI 以及PG、LSCG、HSCG、LUCG 大鼠的RA-S/D 均降低(
P
<0.05);CEUS 检查显示所有药物治疗组大鼠肾脏TIC 曲线的TTP、AT、AUC降低(
P
<0.01),PG、HSCG、LUCG、HUCG 大鼠的DPI 升高(
P
<0.01)。
结论
2
CGLZ 具有治疗NS 作用,以小剂量用药为最佳。CEUS 联合CDFI 检查可用来评估NS 模型大鼠及其药物治疗前后的肾脏形态及血流动力学变化,有助于指导临床应用。
Objective
2
To investigate the therapeutic effect of antidiabetic drug canagliflozin (CGLZ) on adriamycin-induced nephrotic syndrome (NS) in rats, and the evaluation of contrast-enhanced ultrasound (CEUS) combined with color Doppler flow imaging (CDFI) during the treatment.
Methods
2
A total of 56 male SD rats were randomly divided into normal group (NG), model group (MG), prednisone (PAT) group (PG), low-dose single CGLZ group (LSCG), high-dose single CGLZ group (HSCG), low-dose CGLZ + PAT group (LUCG) and high-dose CGLZ + PAT group (HUCG), with 8 rats in each group. The NS model in rats was induced by injecting adriamycin twice into the tail vein, and then the NS rats were treated by intragastric administration daily for 6 weeks with reference of PAT. Twenty-four hour urine total protein (24 h-UTP) was assessed one day before the start of oral administration and at the end of 2, 4 and 6 weeks after oral administration, respectively. CDFI and CEUS were performed on the right renal artery at the end of 6 weeks after oral administration, and the blood of abdominal aorta was taken for serological test the next day.
Results
2
Compared with those detection index of NG rats, the 24-hour UTP of MG rats increased (
P
<0.01), the serum ALB decreased and TG, TC, LDL increased (
P
<0.01), and CDFI shows that RRCT was thinner (
P
<0.01) and the renal artery blood flow indicators RA-PI, RA-RI, RA-S/D all increased (
P
<0.05), and CEUS image shows that the TIC curve parameters TTP, AT, AUC all increased and DPI decrease in MG rats (
P
<0.01). After drug treatment, compared with those detection index of MG rats, 24 h-UTP decrease in LSCG after 2 weeks (
P
<0.01), and decrease significantly in all drug groups after 6 weeks (
P
<0.01); the serological test results show that the serum ALB in all CGLZ groups increased (
P
<0.05), TG decrease in LSCG (
P
<0.01), TC and LDL also decrease in LUCG after 6 weeks (
P
<0.05); CDFI shows that the RRCT thinning degree in all CGLZ is reduced (
P
<0.01), and the RA-PI in LSCG, RA-RI in PG, and RA-S/D in PG, LSCG, HSCG and LUCG rats all decreased (
P
<0.05); CEUS shows that the TTP, AT and AUC of renal TIC curve in drug treatment groups all decreased (
P
<0.01), and the DPI in PG, HSCG, LUCG and HUCG rats increased (
P
<0.01).
Conclusions
2
CGLZ has the effect of treating NS, and the small dose is the best. CEUS combined with CDFI can be used to evaluate the renal morphology and hemodynamic changes of NS model rats before and after drug treatment, which is helpful to guide clinical application.
肾病综合征钠-葡萄糖协同转运蛋白2抑制剂卡格列净超声造影彩色多普勒血流显像技术
nephrotic syndromesodium glucose cotransporter 2 inhibitorcanagliflozincontrast-enhanced ultrasoundcolor doppler flow imaging
Fischer K, Meral FC, Zhang Y, et al. High-resolution renal perfusion mapping using contrast-enhanced ultrasonography in ischemia-reperfusion injury monitors changes in renal microperfusion[J]. Kidney Int, 2016, 89(6): 1388-1398.
吴际, 赵静瑜, 李晓勇, 等. 原发性肾病综合征患者血清TXNIP、miR-146a-5p表达及相关性[J]. 广东医学, 2022, 43(9): 1155-1159.
Wu J, Zhao JY, Li XY, et al. Expression and correlation of serum TXNIP and miR-146a-5p in patients with primary nephrotic syndrome[J]. J Guangdong Med, 2022, 43(9): 1155-1159.
涂美琳, 谢文佳, 陈洪宇, 等. 超声造影定量分析在早期原发性慢性肾病诊断中的应用价值[J]. 浙江医学, 2019, 41(21): 2324-2327.
Tu ML, Xie WJ, Chen HY, et al. Diagnostic value of contrast-enhanced ultrasound in early primary chronic kidney disease[J]. Zhejiang Med, 2019, 41(21): 2324-2327.
Han BH, Park SB. Usefulness of contrast-enhanced ultrasound in the evaluation of chronic kidney disease [J]. Curr Med Imaging, 2021; 17(8): 1003-1009.
贺升升, 李爱平, 张王宁, 等. 阿霉素肾病模型及其病理机制研究进展[J]. 中草药, 2018, 49(22): 5426-5434.
He SS, Li AP, Zhang WN, et al. Research progress of adriamycin nephropathy model and its pathological mechanism[J]. Chin Herbal Med, 2018, 49(22): 5426-5434.
王嘉文, 宋璐, 赵良斌, 等. 补肾活血祛风方对阿霉素肾病大鼠的干预研究[J]. 中药与临床, 2021, 12(2): 26-29.
Wang JW, Song L, Zhao LB, et al. Effect of Bushen Huoxue Qufeng decoction on adriamycin nephropathy in rats[J]. Chin Med Clin, 2021, 12(2): 26-29.
Schneider AG, Goodwin MD, Schelleman A, et al. Contrast-enhanced ultrasonography to evaluate changes in renal cortical microcirculation induced by noradrenaline: a pilot study[J]. Crit Care, 2014, 18(6): 653.
Sugiyama H, Yokoyama H, Sato H, et al. Japan Renal Biopsy Registry: the first nationwide, web-based, and prospective registry system of renal biopsies in Japan[J]. Clin Exp Nephrol, 2011, 15(4): 493-503.
Zhou FD, Shen HY, Chen M, et al. The renal histopathological spectrum of patients with nephrotic syndrome: an analysis of 1523 patients in a single Chinese centre[J]. Nephrol Dial Transplant, 2011, 26( 12): 3993-3397.
Agrawal S, Zaritsky JJ, Fornoni A, et al. Dyslipidaemia in nephrotic syndrome: mechanisms and treatment[J]. Nature Reviews Nephrology. 2018; 14(1): 57-70.
Alkabbani W, Gamble JM. Profile of ipragliflozin, an oral SGLT-2 inhibitor for the treatment of type 2 diabetes: the evidence to date[J]. Drug Des Devel Ther, 2021, 15: 3057-3069.
McQuarrie EP, Gillis KA, Mark PB. Seven suggestions for successful SGLT2i use in glomerular disease - a standalone CKD therapy?[J]. Curr Opin Nephrol Hypertens, 2022, 31(3): 272-277.
Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy[J]. N Engl J Med, 2019, 380(24): 2295-2306.
Heerspink HJL, Kosiborod M, Inzucchi SE, et al. Renoprotective effects of sodium-glucose cotransporter-2 inhibitors[J]. Kidney Int, 2018, 94(1): 26-39.
Nandula SR, Kundu N, Awal HB, et al. Role of canagliflozin on function of CD34+ve endothelial progenitor cells (EPC) in patients with type 2 diabetes[J]. Cardiovasc Diabetol, 2021, 20(1): 44.
Moccia F, Guerra G. Ca(2+) signalling in endothelial progenitor cells: friend or foe?[J]. J Cell Physiol, 2016, 231(2): 314-327.
Petrucci I, Clementi A, Sessa C, et al. Ultrasound and color doppler applications in chronic kidney disease[J]. J Nephrol, 2018, 31(6): 863-879.
董尚鑫, 施辉波, 赵圆圆, 等. 超声造影在供肾质量评估中的应用[J]. 器官移植, 2022, 13(5): 678-682.
Dong SX, Shi HB, Zhao YY, et al. Application of contrast-enhanced ultrasound in evaluation of donor kidney quality[J]. Organ Transplant, 2022, 13(5): 678-682.
Read DJ, Doleman B, Heinink T, et al. Contrast-enhanced ultrasound assessed renal microvascular perfusion may predict postoperative renal complications following colorectal surgery[J]. Clin Exp Pharmacol Physiol, 2021, 48(7): 971-977.
Ran X, Lin L, Yang M, et al. Contrast-enhanced ultrasound evaluation of renal blood perfusion changes after percutaneous transluminal renal angioplasty and stenting for severe atherosclerotic renal artery stenosis[J]. Ultrasound Med Biol, 2020, 46(8): 1872-1879.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构