1.中山大学肿瘤防治中心分子诊断科,广东 广州 510060
2.中山大学肿瘤防治中心病理科,广东 广州 510060
3.广州市妇女儿童医疗中心病理科,广东 广州 510623
刘叶,硕士生,研究方向:肿瘤分子病理;E-mail: liuye@sysucc.org.cn
纸质出版日期:2023-03-20,
收稿日期:2022-11-16,
扫 描 看 全 文
刘叶,刘小云,颜淑梅等.二代测序在子宫内膜癌分子分型的临床应用[J].中山大学学报(医学科学版),2023,44(02):217-223.
LIU Ye,LIU Xiao-yun,YAN Shu-mei,et al.Clinical Application of the Next Generation Sequencing for Molecular Classification in Endometrial Carcinomas[J].Journal of Sun Yat-sen University(Medical Sciences),2023,44(02):217-223.
刘叶,刘小云,颜淑梅等.二代测序在子宫内膜癌分子分型的临床应用[J].中山大学学报(医学科学版),2023,44(02):217-223. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2023.0205.
LIU Ye,LIU Xiao-yun,YAN Shu-mei,et al.Clinical Application of the Next Generation Sequencing for Molecular Classification in Endometrial Carcinomas[J].Journal of Sun Yat-sen University(Medical Sciences),2023,44(02):217-223. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2023.0205.
目的
2
为了探索杂交捕获二代测序技术在子宫内膜癌分子亚型的临床应用。
方法
2
收集中山大学附属肿瘤医院经病理确诊的子宫内膜癌112例,均进行基于1 021个基因panel的杂交捕获二代测序检测,分析各分子亚型的分子变异谱及与临床病理特征之间的关系。
结果
2
DNA聚合酶
ε
(
POLE
)突变型8例(7.1%),错配修复功能缺陷型34例(30.4%),
TP53
突变型26例(23.2%),非特异性分子谱型44例(39.3%),4个亚型肿瘤突变负荷中位数分别为252.0、38.4、5.8及5.4 Muts/Mb。子宫内膜癌各分子亚型之间与患者临床分期、肌层浸润深度及是否有脉管内癌栓与淋巴结转移等临床病理特征无统计学差异。
PTEN
(75.5%)、
PIK3CA
(66.7%)、
ARID1A
(55.9%)、
TP53
(40.2%)、
NF1
(29.4%)为子宫内膜癌最常见的突变。
结论
2
对子宫内膜癌进行二代测序,可同时获悉其分子分型各项指标,有效筛查Lynch综合征、各亚型分子变异谱、为免疫治疗及靶向治疗提供指导,并有助于分子遗传特征的进一步积累及探索。
Objective
2
To explore the clinical application of molecular classification in endometrial cancers with the next generation sequencing (NGS).
Methods
2
Totally 112 cases of endometrial carcinoma diagnosed by pathology in The Sun Yat-sen University Cancer Center were collected. All of them were tested by hybridized-capture second-generation sequencing based on 1,021 gene panel. The molecular variation spectrum of each subtype and its relationship between the clinicopathological features were analyzed.
Results
2
The cases were distributed as follows: 8 (7.1%)
POLE
mutation, 34 (30.4%) mismatch repair deficient, 26 (23.2%) TP53 mutation, 44 (39.3%) non-specific molecular profile. The median tumor mutation burden was respectively 252.0, 38.4, 5.8 and 5.4 Muts/Mb. There were no significantly differences among four subtypes in clinicopathological features such as age, histological grade, lymph node metastasis and clinical stage.
PTEN
(75.5%),
PIK3CA
(66.7%),
ARID1A
(55.9%),
TP53
(40.2%),
NF1
(29.4%) were the most common mutations in endometrial cancers.
Conclusions
2
The utilization of NGS in endometrial cancers can simultaneously identify molecular subgroups, screen Lynch syndrome and obtain molecular variation spectrum, which can provide guidance for immunotherapy and targeted therapy, contribute to further accumulation and exploration of molecular genetic characteristics.
二代测序子宫内膜癌分子分型临床应用
the next generation sequencingendometrial carcinomasmolecular classificationclinical application
王娜, 郭云峰, 宋立芹, 等. HE4、CA125及CA199在鉴别子宫内膜癌肌层浸润深度及病理分期中的临床应用价值[J]. 重庆医科大学学报, 2022, 47(10): 1220-1225.
Wang N, Guo YF, Song LQ, et al. Clinical value of serum HE4, CA125 and CA199 in identifying the myometrial invasion depth and pathological stage of uterine corpus endometrial carcinoma[J]. J Chongqing Med Univ, 2022, 47(10): 1220-1225.
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
Kandoth C, Schultz N, Cherniack AD, et al. Integrated genomic characterization of endometrial carcinoma[J]. Nature, 2013, 497(7447): 67-73.
Talhouk A, McConechy MK, Leung S, et al. A clinically applicable molecular-based classification for endometrial cancers[J]. Br J Cancer, 2015, 113(2): 299-310.
Talhouk A, McConechy M K, Leung S, et al. Confirmation of ProMisE: a simple, genomics-based clinical classifier for endometrial cancer[J]. Cancer, 2017, 123(5): 802-813.
McAlpine J, Leon-Castillo A, Bosse T. The rise of a novel classification system for endometrial carcinoma; integration of molecular subclasses[J]. J Pathol, 2018, 244(5): 538-549.
Casey L, POLESingh N., MMR, and MSI testing in endometrial cancer: proceedings of the ISGyP Companion Society Session at the USCAP 2020 annual meeting[J]. Int J Gynecol Pathol, 2021,40(1): 5-16.
Amant F, Mirza MR, Koskas M, et al. Cancer of the corpus uteri[J]. Int J Gynaecol Obstet, 2018,143 (S2): 37-50.
McCluggage WG, Singh N, Gilks CB. Key changes to the World Health Organization (WHO) classification of female genital tumours introduced in the 5th edition (2020)[J]. Histopathology, 2022, 80(5): 762-778.
Leon-Castillo A, Britton H, McConechy MK, et al. Interpretation of somatic POLE mutations in endometrial carcinoma[J]. J Pathol, 2020, 250(3): 323-335.
Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]. Genet Med, 2015, 17(5): 405-424.
Rayner E, van Gool IC, Palles C, et al. A panoply of errors: polymerase proofreading domain mutations in cancer[J]. Nat Rev Cancer, 2016, 16(2): 71-81.
Kommoss S, McConechy MK, Kommoss F, et al. Final validation of the ProMisE molecular classifier for endometrial carcinoma in a large population-based case series[J]. Ann Oncol, 2018, 29(5): 1180-1188.
Leon-Castillo A, Gilvazquez E, Nout R, et al. Clinicopathological and molecular characterisation of 'multiple-classifier' endometrial carcinomas[J]. J Pathol, 2020, 250(3): 312-322.
王蒙蒙, 张丽华. Pole基因在子宫内膜癌中的研究进展[J]. 诊断病理学杂志, 2021, 28(7): 582-584.
Wang MM, Zhang LH. Research progress of Pole gene in endometrial cancer[J]. Chin J Diagn Pathol, 2021, 28(7): 582-584.
Imboden S, Nastic D, Ghaderi M, et al. Phenotype of POLE-mutated endometrial cancer[J]. PLoS One, 2019, 14(3): e214318.
Li Y, He Q, Li S, et al. POLE mutation characteristics in a Chinese cohort with endometrial carcinoma[J]. Onco Targets Ther, 2020, 13: 7305-7316.
Chen YX, Wang ZX, Yuan SQ, et al. POLE/POLD1 mutation in non-exonuclease domain matters for predicting efficacy of immune-checkpoint-inhibitor therapy[J]. Clin Transl Med, 2021,11(9): e524.
Liu Y, Patel L, Mills GB, et al. Clinical significance of CTNNB1 mutation and Wnt pathway activation in endometrioid endometrial carcinoma[J]. J Natl Cancer Inst, 2014,106(9): dju245.
Bell DW, Ellenson LH. Molecular genetics of endometrial carcinoma[J]. Annu Rev Pathol, 2019, 14: 339-367.
Lu KH, Broaddus RR. Endometrial cancer[J]. N Engl J Med, 2020, 383(21): 2053-2064.
Kihara A, Amano Y, Matsubara D, et al. BRG1, INI1, and ARID1B deficiency in endometrial carcinoma: a clinicopathologic and immunohistochemical analysis of a large series from a single institution[J]. Am J Surg Pathol, 2020, 44(12): 1712-1724.
Santoro A, Angelico G, Travaglino A, et al. Clinico-pathological significance of TCGA classification and SWI/SNF proteins expression in undifferentiated/dedifferentiated endometrial carcinoma: A possible prognostic risk stratification[J]. Gynecol Oncol, 2021, 161(2): 629-635.
Hong JH, Cho HW, Ouh YT, et al. Genomic landscape of advanced endometrial cancer analyzed by targeted next-generation sequencing and the cancer genome atlas (TCGA) dataset[J]. J Gynecol Oncol, 2022, 33(3): e29.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构