1.中山大学医学院解剖学教研室,广东 广州 510080
2.南方医科大学人体解剖学教研室,广东省数字医学与生物力学重点实验室,广东 广州 510515
刘瑞平,硕士生,研究方向:生物力学,E-mail:2313452520@qq.com
纸质出版日期:2023-03-20,
收稿日期:2022-11-03,
扫 描 看 全 文
刘瑞平,欧阳钧.下肢外骨骼康复机器人的发展和应用[J].中山大学学报(医学科学版),2023,44(02):354-360.
LIU Rui-ping,OUYANG Jun.Development and Application of Lower Limb Exoskeleton Rehabilitation Robot[J].Journal of Sun Yat-sen University(Medical Sciences),2023,44(02):354-360.
刘瑞平,欧阳钧.下肢外骨骼康复机器人的发展和应用[J].中山大学学报(医学科学版),2023,44(02):354-360. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2023.0222.
LIU Rui-ping,OUYANG Jun.Development and Application of Lower Limb Exoskeleton Rehabilitation Robot[J].Journal of Sun Yat-sen University(Medical Sciences),2023,44(02):354-360. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2023.0222.
随着社会老龄化程度不断加深,下肢功能障碍的患者越来越多,患者运动能力的康复治疗越来越重要。从上世纪80年代开始,面向下肢的外骨骼康复机器人逐步应用于运动障碍患者的康复治疗,尤其是脑卒中等神经疾病导致的运动功能障碍。面向下肢的外骨骼机器人是一种可穿戴、非线性的复杂机械装置,有着广泛的研究与应用价值。本综述根据外骨骼康复机器人治疗部位分三个方面阐述了面向下肢的外骨骼康复机器人的研究现状,临床应用以及面临的挑战,并在此基础上展望了面向下肢的外骨骼康复机器人的发展趋势。
With the deepening of the aging of society, there are more and more patients with motor dysfunction of lower limb,and rehabilitation therapy for these patients is becoming more and more important. Since the 1980s, exoskeleton robots for lower-limb rehabilitation have been applied to the rehabilitation for patient with dyskinesia, especially those with dyskinesia caused by neurological diseases such as stroke. These exoskeleton robots are wearable, nonlinear and complex mechanical devices, which deserve to be studied and widely applied. In this review, the research status, clinical application and challenges of exoskeleton robots for lower-limb rehabilitation are described in three aspects according to the difference of the therapeutic sites of exoskeleton rehabilitation robots, and on the basis, the development trend of exoskeleton robots for lower-limb rehabilitation is prospected.
下肢外骨骼机器人康复应用
lower limbexoskeleton robotrehabilitationapplication
Kujala UM, Hautasaari P, Vähä-Ypyä, et al. Chronic diseases and objectively monitored physical activity profile among aged individuals – a cross-sectional twin cohort study[J]. Annals of Medicine, 2019, 51(1): 1-25.
廖旺, 唐静仪, 雷鸣, 等. 粤港澳大湾区失智症友好社区建设专家共识[J]. 中国神经精神疾病杂志, 2022, 48(4): 193-205.
Liao W, Tang JY, Lei M, et al. Expert consensus on the construction of dementia-friendly communities in the Guangdong-Hong Kong-Macao Greater Bay Area[J]. Chin J Nerv Ment Dis, 2022, 48(4): 193-205.
Daniels R, Rossum EV, Witte LD, et al. Frailty in older age: concepts and relevance for occupational and physical therapy[J]. Physical & Occupational Therapy in Geriatrics, 2009, 27(2): 81-95.
Cook AM, Polgar JM, Hussey SM. Cook & Hussey's assistive technologies[M]. Mosby/Elsevier, 2008: 23-24.
King LA, Horak FB. Delaying mobility disability in people with Parkinson disease using a sensorimotor agility exercise program[J]. Phys Ther, 2009, 89(4): 384-393.
Cook AM. Ethical issues related to the use/non-use of assistive technologies[J]. Developmental Disabilities Bulletin, 2009, 37(1): 127-152.
Agree EM, Freedman VA. A comparison of assistive technology and personal care in alleviating disability and unmet need[J]. Gerontologist, 2003(3): 335-344.
李龙飞,朱凌云,苟向锋. 可穿戴下肢外骨骼康复机器人研究现状与发展趋势[J]. 医疗卫生装备, 2019, 40(12): 89-97.
Li LF , Zhu LY , Gou XF. Current status and development trend of wearable lower-limb exoskeleton rehabilitation robot[J]. Chin Med Equipm J, 2019, 40(12): 89-97.
Formalskii A, Shneider A. Book reviews: biped locomotion (dynamics, stability, control and application)[J]. Intern J Robot Res, 1992, 11(4): 396.
孙建东, 金德闻 .一种下肢被动运动康复训练器[J]. 中国康复医学杂志, 2001, 16(5): 298-299.
Sun JD, Jin DW. A training device for lower limbs passive exercise[J]. Chin J Rehabilit Med, 2001, 16(5): 298-299.
李高峰, 方新. 矫形器产品的功能考量[J]. 中国组织工程研究, 2006, 10(37): 134-135.
Li GF, Fang X. Consideration of the function of orthoses [J]. Chin J Clin Rehabilit, 2006, 010(037): 134-135.
沈靖南, 黄承达. 关节外科中的新概念——持续被动运动[J]. 国外医学:创伤与外科基本问题分册, 1991, 12(3): 152-155.
Shen JN , Huang CD. A new concept in joint surgery —— continuous passive motion[J]. Foreign Medicine: Basic Problems in Trauma and Surgery, 1991, 12(3): 152-155.
Van Kammen K, Boonstra AM, WLHVVan d, et al. Lokomat guided gait in hemiparetic stroke patients: the effects of training parameters on muscle activity and temporal symmetry[J]. Disabil Rehabilit, 2019: 1-9.
林芳堃, 李仰军, 张银亮, 等. 下肢康复机器人对脑卒中偏瘫患者下肢功能修复的影响[J]. 中国医疗器信息, 2019, 25(20): 85-86.
Lin FK, Li YJ, Zhang YL, et al. Effect of lower limb rehabilitation robot on lower limb functional repair of stroke patients with hemiplegia[J].Chin Med Device Inform, 2019, 25(20): 85-86.
Freivogel S, Mehrholz J, Husak-Sotomayor T, et al. Gait training with the newly developed 'LokoHelp'-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study.[J]. Brain injury : BI, 2008, 22(7-8): 625-32.
Freivogel S, SchmalohrD, Mehrholz J. Improved walking ability and reduced therapeutic stress with an electromechanical gait device[J]. J Rehabilit Med, 2009, 41(9): 734-739.
Strausser KA, Swift TA, Zoss AB, et al. Prototype medical exoskeleton for paraplegic mobility: first experimental results[C]. ASME 2010 Dynamic Systems and Control Conference, 2010: 453-458.
Miller LE. Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis[J]. Med Devices, 2016, 9: 455-466.
孙立宁, 何富君, 杜志江, 等. 辅助型康复机器人技术的研究与发展[J]. 机器人, 2006, 28(3): 6.
Sun LN , He FJ , Du ZJ, et al. Research and development of assistive rehabilitation robotics[J]. Robot, 2006, 28(3): 6.
何清华, 黄素平, 黄志雄. 智能轮椅的研究现状和发展趋势[J]. 机器人技术与应用, 2003(2): 5.
He QH, Huang SP, Huang ZX. Research status and development trend of intelligent wheelchair[J]. Robot Technique and Application, 2003(2): 5
李晓杰, 梁健. 基于INPD与KE的老年人辅助陪伴机器人造型设计[J]. 包装工程, 2020, 41(24): 70-78.
Li XJ, Liang J. Design of assisted companion robot for the elderly based on INPD and KE[J]. Packaging Engineering, 2020, 41(24): 70-78.
Watanabe H, Tanaka N, Inuta T, et al. Locomotion improvement using a hybrid assistive limb in recovery phase stroke patients: a randomized controlled pilot study[J]. Arch Phys Med Rehabil, 2014, 95(11): 2006-2012.
Fineberg DB, Asselin P, Harel NY, et al. Vertical ground reaction force-based analysis of powered exoskeleton-assisted walking in persons with motor-complete paraplegia[J]. J Spinal Cord Med, 2013, 36(4): 313-321.
Yang A, Asselin P, Knezevic S, et al. Assessment of in-hospital walking velocity and level of assistance in a powered exoskeleton in persons with spinal cord injury[J]. Top Spinal Cord Inj Rehabil, 2015, 21(2): 100-109.
Jyrkoski T, Merilampi S, Puustinen J, et al. Over-ground robotic lower limb exoskeleton in neurological gait rehabilitation: user experiences and effects on walking ability[J]. Technol Disa, 2020, 33(7): 1-11.
Tefertiller C, Hays K, Jones J, et al. Initial outcomes from a multicenter study utilizing the indego powered exoskeleton in spinal cord injury[J]. Top Spinal Cord Inj Rehabil, 2018, 24(1): 78.
Carpino G, Pezzola A, Urbano M, et al. Assessing effectiveness and costs in robot-mediated lower limbs rehabilitation: a meta-analysis and state of the art[J]. Healthc Eng, 2018, 2018: 7492024.
Bishop L, Khan M, Martelli D, et al. Exploration of two training paradigms using forced induced weight shifting with the tethered pelvic assist device to reduce asymmetry in individuals after stroke: case reports[J]. Am J Phys Med Rehabil, 2017, 96(10 Suppl 1): S135-S140.
张小俊, 刘更谦, 何春燕, 等. 基于虚拟现实的踝关节康复机器人的综述[J]. 机电产品开发与创新, 2006, 19(1): 3.
Zhang XJ, Liu GQ, He CY, et al. A review of ankle rehabilitation robots based on virtual reality[J]. Developm Innovat Machin Elect Prod, 2006, 19(1): 3.
Girone M J, Burdea GC, Bouzit M. Rutgers ankle orthopedic rehabilitation interface[J]. Asme Dynamic Systems & Control Division Dsc, 1999: 305-312.
Hussain S, Jamwal PK, Vliet PV , et al. Robot assisted ankle neuro-rehabilitation: state of the art and future challenges[J]. Expert Review of Neurotherapeutics, 2020, 21(6): 111-121.
Eng JJ, Pierrynowski MR. Effect of foot orthotics on the kinematics of the knee joint[J]. J Biomechan, 1989, 22(10): 1007.
Gordon KE, Sawicki GS, Ferris DP . Mechanical performance of artificial pneumatic muscles to power an ankle-foot orthosis[J]. J Biomechan, 2006, 39(10): 1832-1841.
Ekkelenkamp R, Veneman J, Van Der Kooij H. LOPES: a lower extremity powered exoskeleton[C].Proceedings 2007 IEEE International Conference on Robotics and Automation. IEEE, 2007: 3132-3133.
Thalman CM, Hsu J, Snyder L, et al. Design of a soft ankle-foot orthosis exosuit for foot drop assistance[C]. 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 8436-8442.
王同, 王春宝, 韦建军, 等. 一种新型踝关节康复机器人系统设计[J]. 机械设计与研究, 2021, 37(1): 47-53.
Wang T, Wang CB, Wei JJ, et al. Systemic design and research of a novel ankle rehabilitation robot for hemiplegic survivors[J]. Machine Design & Research, 2021, 37(1): 47-53.
Sukal-Moulton T, Clancy T, Zhang LQ, et al. Clinical application of a robotic ankle training program for cerebral palsy compared to the research laboratory application: does it translate to practice ?[J]. Arch Phys Med Rehabil, 2014, 95(8): 1433-1440.
Thiele F, Schuhmacher S, Schwaller C, et al. Restrictions in the ankle sagittal-and frontal-plane range of movement during simulated walking with different types of orthoses[J]. J Funct Morphol Kinesiol, 2018, 3(2): 21.
Petrucci MN, MacKinnon CD, Hsiao-Wecksler ET. Modulation of anticipatory postural adjustments using a powered ankle orthosis in people with Parkinson’s disease and freezing of gait[J]. Gait & posture, 2019, 72: 188-194.
Raffalt PC, Chrysanthou M, Duda GN, et al. Dynamics of postural control in individuals with ankle instability: effect of visual input and orthotic use[J]. Comput Biol Med, 2019, 110: 120-126.
Berenpas F, Ge Urts AC, Boer JD , et al. Surplus value of implanted peroneal functional electrical stimulation over ankle-foot orthosis for gait adaptability in people with foot drop after stroke[J]. Gait & Posture, 2019, 71: 157-162.
王士允. 基于表面肌电信号的膝关节康复机器人控制技术研究[D]. 南京理工大学, 2013: 1-70.
Wang SY. Research on control technology of knee rehabilitation robot based on surface EMG signal[D]. Nanjing Univ Sci Technol, 2013: 1-70
Sameri Nedafi R, Moazemi Goudarzi A, Moghimi Ghadikolaei J. Empirical study of mechanical behavior of a designed active knee joint brace equipped by a series elastic actuator[J]. Journal of Mechanical Engineering, 1970, 49(1): 55-61.
刘洪涛. 截瘫患者下肢康复机器人设计与实验研究[D]. 燕山大学, 2010: 1-85.
Liu HT. Design and experimental research of lower limb rehabilitation robot used for paraplegia patients[D]. Yanshan Univ, 2010: 1-85.
Shihomi K, Koji O, Tadao T, et al. Development of new rehabilitation robot device that can be attached to the conventional Knee-Ankle-Foot-Orthosis for controlling the knee in individuals after stroke[J]. IEEE Int Conf Rehabil Robot, 2017, 2017: 304-307.
Torrealba RR, Udelman SB, Fonseca-Rojas ED. Design of variable impedance actuator for knee joint of a portable human gait rehabilitation exoskeleton[J]. Mechan Mach Theo, 2017, 116: 248-261.
McGibbon CA, Sexton A, Jayaraman A, et al. Evaluation of the Keeogo exoskeleton for assisting ambulatory activities in people with multiple sclerosis: an open-label, randomized, cross-over trial[J]. Neuroeng Rehabil, 2018, 15(1): 117.
陈安民, 柯雯昙, 邵德成, 等. 我国两种髋关节功能评定方法的临床比较研究[J]. 骨与关节损伤杂志, 1998, 13(5): 3.
Cheng AM, Ke WT, Shao DC, et al. Comparative study of two different hip function evaluation systems in our country[J]. Chin J Bone Joint Injury, 1998, 13(5): 3.
梁文渊. 可穿戴型并联式髋关节助力机器人研究[D]. 中国科学技术大学, 2012: 1-145.
Liang WY. Research on wearable parallel assistive robot for hip joint power assist[D]. University of Science and Technology of China, 2012: 1-145.
Giovacchini F, Vannetti F, Fantozzi M, et al. A light-weight active orthosis for hip movement assistance[J]. Robotics and Autonomous Systems, 2015, 73: 123-134.
Karavas N, Kim J, Galiana I, et al. Autonomous soft exosuit for hip extension assistance[M]. Springer International Publishing, 2017: 331-335.
Mogharabi M, Esfahani MK, Tahamipour-Z SM, et al. Assistive control of a hip exoskeleton assistance robot (hexa-i) for rehabilitation of stroke patients[C]. 2021 9th RSI International Conference on Robotics and Mechatronics (ICRoM), IEEE, 2021: 523-529.
0
浏览量
0
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构