1.中山大学医学院,广东 深圳 518107
2.中山大学附属第一医院麻醉科,广东 广州 510080
罗国娅,硕士生,研究方向:阿片类受体激动剂引发痛觉过敏及镇痛耐受的发生机制,E-mail: 1227619669@qq.com
纸质出版日期:2023-05-20,
收稿日期:2022-11-26,
扫 描 看 全 文
罗国娅,王晓娥,李林芝等.瑞芬太尼下调大鼠背根神经节和脊髓背角GIRK2的表达[J].中山大学学报(医学科学版),2023,44(03):361-368.
LUO Guo-ya,WANG Xiao-e,LI Lin-zhi,et al.Remifentanil Down-regulates GIRK2 Expression in Rat Dorsal Root Ganglion and Spinal Dorsal Horn[J].Journal of Sun Yat-sen University(Medical Sciences),2023,44(03):361-368.
罗国娅,王晓娥,李林芝等.瑞芬太尼下调大鼠背根神经节和脊髓背角GIRK2的表达[J].中山大学学报(医学科学版),2023,44(03):361-368. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2023.0301.
LUO Guo-ya,WANG Xiao-e,LI Lin-zhi,et al.Remifentanil Down-regulates GIRK2 Expression in Rat Dorsal Root Ganglion and Spinal Dorsal Horn[J].Journal of Sun Yat-sen University(Medical Sciences),2023,44(03):361-368. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2023.0301.
目的
2
观察G蛋白门控内向整流钾离子通道亚单位2(GIRK2)在瑞芬太尼诱导的痛觉过敏大鼠背根神经节和脊髓背角中的表达和分布的变化。
方法
2
成年雄性SD大鼠尾静脉输注瑞芬太尼4 μg/(kg·min)2 h建立痛觉过敏模型。瑞芬太尼注射后6 h、1 d、3 d和5 d,采用免疫荧光化学法观察GIRK2在瑞芬太尼诱导痛觉过敏大鼠的背根神经节(DRG)和脊髓背角中分布的变化。采用免疫印迹法检测大鼠背根神经节和脊髓背角 GIRK2总蛋白和膜蛋白的表达。最后,采用行为学评价瑞芬太尼输注后,鞘内注射GIRK2特异性激动剂ML297对痛阈的影响。
结果
2
免疫荧光结果显示,在背根神经节和脊髓背角I-II板层,GIRK2主要与IB4阳性的小神经元及其神经纤维共定位,而瑞芬太尼注射后GIRK2表达显著降低。免疫印迹结果显示,静脉输注瑞芬太尼1 d后,与对照组相比,背根神经节 GIRK2总蛋白(0.47 ± 0.10
vs.
1.01 ± 0.17,
P <
0.001)和膜蛋白(0.47 ± 0.11
vs.
1.06 ± 0.12,
P <
0.001)表达水平均显著减少;与背根神经节结果相一致的是,脊髓背角GIRK2总蛋白水平(0.52 ± 0.09
vs.
1.10 ± 0.08,
P
<
0.001)和膜蛋白表达水平(0.54 ± 0.10
vs.
1.01 ± 0.13,
P
<
0.001)也显著降低。行为学结果显示,与生理盐水组相比,在瑞芬太尼处理大鼠,ML297延长热撤足潜伏期的作用显著降低(
P<
0.001)。
结论
2
持续静脉输注瑞芬太尼可能通过诱导大鼠背根神经节和脊髓背角GIRK2表达下调诱发痛觉过敏。
Objective
2
To observe the changes in the expression and distribution of G protein-gated inwardly rectifying potassium channel subunit 2 (GIRK2) in the dorsal root ganglion (DRG) and spinal cord dorsal horn of rats with remifentanil-induced hyperalgesia.
Methods
2
Hyperalgesia was induced by intravenous infusion of remifentanil 4 μg/kg/min for 2 h in adult male SD rats. At 6th hour and on days 1, 3 and 5 following remifentanil treatment, we used immunofluorescence to examine the changes in the GIRK2 distribution and expression. Immunoblotting was used to detect GIRK2 expression of the total protein and membrane protein in DRG and spinal dorsal horn of rats. Behavioral testing was applied to evaluate the effect of intrathecal injection of GIRK2-specific agonist ML297 on thermal nociceptive threshold on day 1 after remifentanil infusion.
Results
2
mmunofluorescence results showed that GIRK2 was mainly co-localized with IB4-positive small neurons in DRG and nerve fibers in spinal dorsal horn. GIRK2 expression was significantly downregulated following remifentanil treatment. Immunoblotting results revealed that on day 1 following intravenous infusion of remifentanil, compared with those in the control group, GIRK2 expression levels of the total protein and membrane protein in DRG (0.47 ± 0.10
vs.
1.01 ± 0.17,
P
<
0.001; 0.47 ± 0.11
vs.
1.06 ± 0.12,
P <
0.001) and spinal dorsal horn (0.52 ± 0.09
vs.
1.10 ± 0.08,
P
<
0.001; 0.54 ± 0.10
vs.
1.01 ± 0.13,
P
<
0.001) were all significantly decreased. The behavioral results showed that intrathecal ML297 effect on thermal withdrawal latency was significantly reduced following remifentanil treatment (
P
<
0.001).
Conclusions
2
Remifentanil might induce hyperalgesia via down-regulating GIRK2 expression in rat DRG and spinal cord dorsal horn.
瑞芬太尼痛觉过敏G蛋白门控内向整流钾离子通道亚单位2背根神经节脊髓
remifentanilhyperalgesiaG protein-gated inwardly rectifying potassium channel subunit 2dorsal root ganglionspinal cord
Kim SH, Stoicea N, Soghomonyan S, et al. Remifentanil-acute opioid tolerance and opioid-induced hyperalgesia: a systematic review[J]. Am J Ther, 2015, 22(3): e62-e74.
Horii Y, Matsuda M, Takemura H, et al. Spinal and peripheral mechanisms individually lead to the development of remifentanil-induced hyperalgesia[J]. Neuroscience, 2020, 446: 28-42.
Romero A, Romero-Alejo E, Vasconcelos N, et al. Glial cell activation in the spinal cord and dorsal root ganglia induced by surgery in mice[J]. Eur J Pharmacol, 2013, 702(1-3): 126-134.
Lee M, Silverman SM, Hansen H, et al. A comprehensive review of opioid-induced hyperalgesia[J]. Pain Physician, 2011, 14(2): 145-161.
Rohde DS, Detweiler DJ, Basbaum AI. Spinal cord mechanisms of opioid tolerance and dependence: Fos-like immunoreactivity increases in subpopulations of spinal cord neurons during withdrawal [corrected][J]. Neuroscience, 1996, 72(1): 233-242.
Drdla R, Gassner M, Gingl E, et al. Induction of synaptic long-term potentiation after opioid withdrawal[J]. Science, 2009, 325(5937): 207-210.
Jeremic D, Sanchez-Rodriguez I, Jimenez-Diaz L, et al. Therapeutic potential of targeting G protein-gated inwardly rectifying potassium (GIRK) channels in the central nervous system[J]. Pharmacol Ther, 2021, 223: 107808.
Zhao Y, Gameiro-Ros I, Glaaser IW, et al. Advances in Targeting GIRK Channels in Disease[J]. Trends Pharmacol Sci, 2021, 42(3): 203-215.
Nagi K, Pineyro G. Kir3 channel signaling complexes: focus on opioid receptor signaling[J]. Front Cell Neurosci, 2014, 8: 186.
Kano H, Toyama Y, Imai S, et al. Structural mechanism underlying G protein family-specific regulation of G protein-gated inwardly rectifying potassium channel[J]. Nat Commun, 2019, 10(1): 2008.
Marker CL, Cintora SC, Roman MI, et al. Hyperalgesia and blunted morphine analgesia in G protein-gated potassium channel subunit knockout mice[J]. Neuroreport, 2002, 13(18): 2509-2513.
Torrecilla M, Marker CL, Cintora SC, et al. G-protein-gated potassium channels containing Kir3.2 and Kir3.3 subunits mediate the acute inhibitory effects of opioids on locus ceruleus neurons[J]. J Neurosci, 2002, 22(11): 4328-4334.
Blednov YA, Stoffel M, Alva H, et al. A pervasive mechanism for analgesia: activation of GIRK2 channels[J]. Proc Natl Acad Sci U S A, 2003, 100(1): 277-282.
Marker CL. Spinal G-Protein-Gated K+ Channels formed by GIRK1 and GIRK2 subunits modulate thermal nociception and contribute to morphine analgesia[J]. J Neurosci, 2004, 24(11): 2806-2812.
Nockemann D, Morgane RY, Dominika LY, et al. The K(+) channel GIRK2 is both necessary and sufficient for peripheral opioid-mediated analgesia[J]. EMBO Mol Med, 2013, 5(8): 1263-1277.
Kanbara T, Nakamura A, Shibasaki M, et al. Morphine and oxycodone, but not fentanyl, exhibit antinociceptive effects mediated by G-protein inwardly rectifying potassium (GIRK) channels in an oxaliplatin-induced neuropathy rat model[J]. Neurosci Lett, 2014, 580: 119-124.
Takasu K, Ogawa K, Nakamura A, et al. Enhanced GABA ergic synaptic transmission at VLPAG neurons and potent modulation by oxycodone in a bone cancer pain model[J]. Br J Pharmacol, 2015, 172(8): 2148-2164.
Marker CL, Luján R, Loh HH, et al. Spinal G-protein-gated potassium channels contribute in a dose-dependent manner to the analgesic effect of mu- and delta- but not kappa-opioids[J]. J Neurosci, 2005, 25(14): 3551-3559.
Lyu C, Mulder J, Barde S, et al. G protein-gated inwardly rectifying potassium channel subunits 1 and 2 are down-regulated in rat dorsal root ganglion neurons and spinal cord after peripheral axotomy[J]. Mol Pain, 2015, 11: s12915-s12990.
Bagley EE, Chieng BC, Christie MJ, et al. Opioid tolerance in periaqueductal gray neurons isolated from mice chronically treated with morphine[J]. Br J Pharmacol, 2005, 146(1): 68-76.
叶柳, 杨诗颖, 肖力, 等. 活性氧激活的脊髓星形胶质细胞参与瑞芬太尼诱发的痛觉过敏[J]. 中山大学学报(医学科学版), 2016, 37(4): 548-555.
Ye L, Yang SY, Xiao L, et al. Activation of spinal astrocyte via reactive oxygen species contributes to remifentanil-induced hyperalgesia[J]. J Sun Yat-sen Univ (Med Sci), 2016, 37(4): 548-555.
Ikeda K, Kobayashi T, Kumanishi T, et al. Molecular mechanisms of analgesia induced by opioids and ethanol: is the GIRK channel one of the keys?[J]. Neurosci Res, 2002, 44(2): 121-131.
Dascal N. Signalling via the G protein-activated K+ channels[J]. Cell Signal, 1997, 9(8): 551-573.
Kimura M, Shiokawa H, Karashima Y, et al. Antinociceptive effect of selective G protein-gated inwardly rectifying K+ channel agonist ML297 in the rat spinal cord[J]. PLoS One, 2020, 15(9): e239094.
Joseph EK, Levine JD. Mu and delta opioid receptors on nociceptors attenuate mechanical hyperalgesia in rat[J]. Neuroscience, 2010, 171(1): 344-350.
Ohashi Y, Sakhri FZ, Ikemoto H, et al. Yokukansan inhibits the development of morphine tolerance by regulating presynaptic proteins in DRG neurons[J]. Front Pharmacol, 2022, 13: 862539.
Mitrovic I, Margeta-Mitrovic M, Bader S, et al. Contribution of GIRK2-mediated postsynaptic signaling to opiate and alpha 2-adrenergic analgesia and analgesic sex differences[J]. Proc Natl Acad Sci U S A, 2003, 100(1): 271-276.
陈宇, 崔宇, 刘卫锋, 等. 吗啡耐受大鼠背根神经节磷酸化 p38 MAPK的表达[J]. 中山大学学报(医学科学版), 2009, 30(6): 657-661.
Chen Y, Cui Y, Liu WF, et al. Expression of phosphorylated p38 MAPK in the dorsal root ganglion of morphine-tolerant rats[J]. J Sun Yat-sen Univ (Med Sci), 2009, 30(6): 657-661.
王晓娥, 李琪, 肖力, 等. 脊髓CCL2在瑞芬太尼诱导的大鼠痛觉过敏中的作用机制[J]. 中山大学学报(医学版), 2019, 40(5): 706-714.
Wang XE, Li Q, Xiao L, et al. Mechanism of the role of spinal CCL2 in remifentanil-induced nociceptive hyperalgesia in rats[J]. J Sun Yat-sen Univ (Med Sci), 2019, 40(5): 706-714.
于萍, 王晓娥, 崔宇, 等. 脊髓PKCε和μ阿片受体参与瑞芬太尼诱导大鼠痛觉过敏[J]. 中山大学学报(医学科学版), 2020, 41(6): 850-857.
Yu P, Wang XE, Cui Y, et al. Spinal PKCε and μ opioid receptors are involved in remifentanil-induced nociceptive hyperalgesia in rats[J]. J Sun Yat-sen Univ (Med Sci), 2020, 41(06): 850-857.
白雪, 肖力, 叶柳, 等. 背根神经节MMP-9在瑞芬太尼引起的大鼠痛觉过敏中的作用[J]. 中山大学学报(医学科学版), 2015, 36(4): 556-563.
Bai X, Xiao L, Ye L, et al. Role of dorsal root ganglion MMP-9 in remifentanil-induced nociceptive hyperalgesia in rats[J]. J Sun Yat-sen Univ (Med Sci), 2015, 36(4): 556-563.
Corder G, Tawfik VL, Wang D, et al. Loss of μ opioid receptor signaling in nociceptors, but not microglia, abrogates morphine tolerance without disrupting analgesia[J]. Nat Med, 2017, 23(2): 164-173.
Baron R, Hans G, Dickenson AH. Peripheral input and its importance for central sensitization[J]. Ann Neurol, 2013, 74(5): 630-636.
Kliewer A, Schmiedel F, Sianati S, et al. Phosphorylation-deficient G-protein-biased μ-opioid receptors improve analgesia and diminish tolerance but worsen opioid side effects[J]. Nat Commun, 2019, 10(1): 367.
Ingram SL, Macey TA, Fossum EN, et al. Tolerance to repeated morphine administration is associated with increased potency of opioid agonists[J]. Neuropsychopharmacology, 2008, 33(10): 2494-2504.
Chung MK, Cho YS, Bae YC, et al. Peripheral G protein-coupled inwardly rectifying potassium channels are involved in delta-opioid receptor-mediated anti-hyperalgesia in rat masseter muscle[J]. Eur J Pain, 2014, 18(1): 29-38.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构