1.中山大学附属第三医院放射科,广东 广州510630
2.珠海市人民医院核医学科,广东 珠海 519000
林雪,硕士生,研究方向:分子影像,E-mail:linx93@mail2.sysu.edu.cn
纸质出版日期:2023-05-20,
收稿日期:2022-11-04,
扫 描 看 全 文
林雪,许杰华,段亚妮等.131I标记的肝癌核酸纳米火车的制备及生物分布研究[J].中山大学学报(医学科学版),2023,44(03):416-422.
LIN Xue,XU Jie-hua,DUAN Ya-ni,et al.Preparation and Biodistribution of 131I-labeled Hepatoma Nucleic Acid Nanotrain[J].Journal of Sun Yat-sen University(Medical Sciences),2023,44(03):416-422.
林雪,许杰华,段亚妮等.131I标记的肝癌核酸纳米火车的制备及生物分布研究[J].中山大学学报(医学科学版),2023,44(03):416-422. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2023.0307.
LIN Xue,XU Jie-hua,DUAN Ya-ni,et al.Preparation and Biodistribution of 131I-labeled Hepatoma Nucleic Acid Nanotrain[J].Journal of Sun Yat-sen University(Medical Sciences),2023,44(03):416-422. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2023.0307.
目的
2
构建
131
I标记的肝癌核酸纳米火车(NT),并探讨其作为肝癌靶向新型核素载体的可能性。
方法
2
三条核酸短链经退火处理后自组装形成核酸长链并采用氯胺T法进行放射性碘标记得到
131
Ⅰ-NT,纸层析法测纳米粒子的标记率及放射化学纯度,检测标记产物在不同温度(4 ℃、室温)及不同的储存溶剂(PBS、纯血清)中的体外稳定性。通过激光共聚焦显微镜检测肝癌细胞对纳米粒子的特异性摄取情况,分别测定
131
Ⅰ-NT与人肝癌细胞HepG2、正常肝细胞 L02 结合后细胞的放射性摄取率。通过尾静脉注射
131
Ⅰ-NT至HepG2荷瘤小鼠体内,进行生物分布研究。
结果
2
131
Ⅰ-NT标记率为(93.05±0.74)%,纯化后放化纯度为(98.35±0.32)%。4 ℃储存条件下,标记产物在PBS和纯血清中24 h后的放化纯度分别为(92.77±0.04)%、(89.43±0.2)%。
131
Ⅰ-NT分别与两种细胞孵育2 h后,HepG2细胞的放射性摄取率明显高于L02细胞。尾静脉注射
131
Ⅰ-NT后,荷瘤小鼠体内 30 min、1 h、2 h肿瘤部位每克组织放射性摄取值分别为(4.90±0.55)%ID/g、(10.12±0.32)%ID/g、(4.25±0.31)%ID/g,T/M比值相应为7.33±2.04、36.54±12.72、44.93±7.90。
结论
2
成功构建了
131
I标记的长链核酸纳米火车,具有较好体外稳定性,对HepG2细胞及HepG2细胞荷瘤小鼠模型具有较高的靶向性,显示
131
Ⅰ-NT可能是一种具有潜力的靶向人肝癌的核素载体,为肝癌靶向核素诊疗提供新思路。
Objective
2
To construct
131
Ⅰ-labeled hepatoma nucleic acid nanotrain and to explore its feasibility as a new nuclide carrier targeting hepatoma.
Methods
2
Three short nucleic acid chains self-assembled to a long nucleic acid chain after being annealed, and
131
Ⅰ-NT was obtained by radioiodine labeling using chloramine T method. The labeling efficiency and radiochemical purity of the nanoparticles were measured by paper chromatography. The stability of the labeled products in vitro at different temperatures and different storage solvents was detected. The specific uptake of nanoparticles by hepatocellular carcinoma cells was observed by laser confocal microscopy, and the radioactive uptake ratio of
131
Ⅰ-NT combined with human hepatocellular carcinoma cell HepG2 and normal hepatocyte L02 was measured. The biodistribution of
131
Ⅰ-NT was obtained through injecting
131
Ⅰ-NT into HepG2 tumor-bearing mice via tail vein.
Results
2
The labeling rate of
131
Ⅰ-NT was (93.05±0.74) %, and the radiochemical purity post purification was (98.35±0.32) %. Its radiochemical purity in PBS and pure serum at 4℃ for 24 h was (92.77±0.04) % and (89.43±0.2) %, respectively. The radioactivity uptake rate of HepG2 cells was higher than that of L02 cells after
131
Ⅰ-NT was incubated with two kinds of cells for 2 h significantly. After injection of
131
Ⅰ-NT through tail vein, the radioactive uptake per gram of tumor tissue were (4.9±0.55)%ID/g, (10.12±0.32)%ID/g and (4.25±0.31)%ID/g at 30 min, 1 h and 2 h, respectively. The T/M ratio was 7.33±2.04, 36.54±12.72 and 44.93±7.90 respectively.
Conclusions
2
The
131
Ⅰ-labeled long chain nucleic acid nanotrain was constructed successfully, which possesses relatively high stability in vitro , and high targeting ability to HepG2 cells in vitro and HepG2 tumor-bearing mouse model. Our study demonstrated that
131
Ⅰ-NT may be a potential radionuclide carrier targeting human liver cancer, which provides a new idea for the targeted radionuclide diagnosis and treatment of hepatocellular carcinoma.
肝癌适配体纳米火车放射性碘标记生物分布
hepatocellular carcinomaaptamernanotrainradioiodinated labelingbiodistribution
Hu Q, Li H, Wang L, et al. DNA nanotechnology-enabled drug delivery systems[J]. Chem Rev, 2019, 119(10): 6459-6506.
Peng X, Fang S, Ji B, et al. DNA nanostructure-programmed cell entry via corner angle-mediated molecular interaction with membrane receptors[J]. Nano Lett, 2021, 21(16): 6946-6951.
Feng L, Li J, Sun J, et al. Recent advances of DNA nanostructure-based cell membrane engineering[J]. Adv Healthc Mater, 2021, 10(6): e2001718.
Li F, Li J, Dong B, et al. DNA nanotechnology-empowered nanoscopic imaging of biomolecules[J]. Chem Soc Rev, 2021, 50(9): 5650-5667.
Yu H, Alkhamis O, Canoura J, et al. Advances and challenges in small-molecule DNA aptamer isolation, characterization, and sensor development[J]. Angew Chem Int Ed Engl, 2021, 60(31): 16800-16823.
Ni S, Zhuo Z, Pan Y, et al. Recent progress in aptamer discoveries and modifications for therapeutic applications[J]. ACS Appl Mater Interfaces, 2021, 13(8): 9500-9519.
Wang Y, Zhang Y, Li PC, et al. Development of novel aptamer-based targeted chemotherapy for bladder cancer[J]. Cancer Res, 2022, 82(6): 1128-1139.
Zhang L, Wang M, Zhu Z, et al. A GD2-aptamer-mediated, self-assembling nanomedicine for targeted multiple treatments in neuroblastoma theranostics[J]. Mol Ther Nucleic Acids, 2021, 26: 732-748.
Wang Z, Song L, Liu Q, et al. A Tubular DNA nanodevice as a siRNA/Chemo-Drug Co-delivery vehicle for combined cancer therapy[J]. Angew Chem Int Ed Engl, 2021, 60(5): 2594-2598.
Zhang GX, Liu YL, Yang M, et al. An aptamer-based, fluorescent and radionuclide dual-modality probe[J]. Biochimie, 2020, 171-172: 55-62.
林鹏, 蔡敏清, 房俊伟, 等. 肝癌术后复发的外科治疗研究现状及进展[J]. 器官移植, 2022, 13(1): 111-119.
Lin P, Cai MQ, Fang JW, et al. Research status and progress on surgical treatment of postoperative recurrence of hepatocellular carcinoma[J]. Organ Transpl, 2022, 13(1): 111-119.
曾昭冲, 陈一兴. 原发性肝癌放射治疗专家共识(2020年版) [J].临床肝胆病杂志, 2021, 37(02): 296-301.
Zeng ZC, Chen YX. Consensus on radiation therapy for primary liver cancer (2020) [J].J Clin Hepatol, 2021, 37(02): 296-301.
Henry SJW, Stephanopoulos N. Functionalizing DNA nanostructures for therapeutic applications[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2021, 13(6): e1729.
Sabir F, Zeeshan M, Laraib U, et al. DNA based and stimuli-responsive smart nanocarrier for diagnosis and treatment of cancer: applications and challenges[J]. Cancers (Basel), 2021, 13(14):3396.
Zhu G, Zheng J, Song E, et al. Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics[J]. Proc Natl Acad Sci U S A, 2013, 110(20): 7998-8003.
Chandrasekaran AR. Nuclease resistance of DNA nanostructures[J]. Nat Rev Chem, 2021, 5(4): 225-239.
Anastassacos FM, Zhao Z, Zeng Y, et al. Glutaraldehyde cross-linking of oligolysines coating DNA origami greatly reduces susceptibility to nuclease degradation[J]. J Am Chem Soc, 2020, 142(7): 3311-3315.
Perrault SD, Shih WM. Virus-inspired membrane encapsulation of DNA nanostructures to achieve in vivo stability[J]. ACS Nano, 2014, 8(5): 5132-5140.
杨敏, 黄文山, 查悦明, 等. 131Ⅰ标记的肝癌核酸适配子在荷瘤裸鼠体内生物分布及显像 [J].中华肝脏外科手术学电子杂志, 2019, 8(3): 260-264.
Yang M, Huang WS, Zha YM, et al. Biodistribution and imaging of 131I-labelled hepatoma aptamer in tumor-bearing nude mice [J].Chin J Hepat Surg (Electronic Edition), 2019, 8(3): 260-264.
杨婷, 焦举, 吕殷婷, 等. 99m锝标记前列腺癌PSMA适配体的制备和临床前研究 [J].中山大学学报(医学科学版), 2017, 38(6): 848-853.
Yang T, Jiao J, Lyu YT, et al. Preparation and preclinical study of 99mTc-labeled prostate cancer aptamer [J].J Sun Yat-sen Univ (Med Sci), 2017, 38(6): 848-853.
沈晶, 王荣福, 张春丽, 等. 放射性碘标记反义寡核苷酸在荷人淋巴瘤裸鼠中的分布及显像研究 [J].北京大学学报(医学版), 2004, (6): 655-659.
Shen J, Wang RF, Zhang CL, et al. Study on biodistribution and imaging of radioiodinated antisense oligonucleotides in nude mice bearing human lymphoma [J].J Peking Univ Health Sci, 2004, (6): 655-659.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构