北京大学深圳医院神经外科,广东 深圳 518063
孙士隆,硕士,住院医师,研究方向:中枢神经系统肿瘤临床与基础,E-mail:sunshilongky@126.com
纸质出版日期:2023-05-20,
收稿日期:2022-08-25,
扫 描 看 全 文
孙士隆,陈保东.自然杀伤细胞在神经胶质瘤免疫治疗中的研究进展[J].中山大学学报(医学科学版),2023,44(03):511-518.
SUN Shi-long,CHEN Bao-dong.Research Progress of NK Cells in Immunotherapy of Glioma[J].Journal of Sun Yat-sen University(Medical Sciences),2023,44(03):511-518.
孙士隆,陈保东.自然杀伤细胞在神经胶质瘤免疫治疗中的研究进展[J].中山大学学报(医学科学版),2023,44(03):511-518. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2023.0320.
SUN Shi-long,CHEN Bao-dong.Research Progress of NK Cells in Immunotherapy of Glioma[J].Journal of Sun Yat-sen University(Medical Sciences),2023,44(03):511-518. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2023.0320.
自然杀伤(NK)细胞是T细胞后具有临床应用前景的另一类抗肿瘤免疫细胞。NK 细胞的活性主要受其表面受体和免疫微环境的调控,胶质瘤较强的免疫抑制性肿瘤微环境使NK细胞免疫治疗效率较低。本综述从胶质瘤-NK细胞交互作用角度讨论NK细胞在脑胶质瘤免疫治疗中作用的最新研究进展,总结靶向NK 细胞的化合物、单克隆抗体和细胞因子疗法,重点讨论了基因修饰的NK细胞在胶质瘤免疫治疗的现状及趋势,以及胶质瘤细胞的相关免疫逃逸分子机制,为基于NK细胞的免疫治疗神经胶质瘤提供理论依据和新的思路。
Natural Killer (NK) cells are another type of anti-tumor immune cells with promising clinical application in addition to T cells. NK cell activity is mainly regulated by its surface receptors and immune microenvironment. The strong immunosuppressive microenvironment of glioma results in low efficiency of NK cell immunotherapy. This article reviews NK cells in the immunotherapy for glioma from the interaction of glioma-NK cell, and the latest research progress of targeted NK cells compounds, monoclonal antibody, and cytokine therapy, focusing on the genetic modification of NK cells in the present situation and trend of glioma immunotherapy, and molecular mechanism of glioma cells related to immune escape. We hope this article will provide theoretical basis and new ideas for NK cell-based immunotherapy of glioma.
神经胶质瘤自然杀伤细胞免疫治疗临床试验
gliomanatural killer cellimmunotherapyclinical trial
Yang DX, Jing Y, Xu ZM, et al. Primary glioblastoma of cerebellopontine angle in adult mimicking acoustic neuroma[J]. World Neurosurg, 2019, 122: 48-52.
Davis FG, Smith TR, Gittleman HR, et al. Glioblastoma incidence rate trends in Canada and the United States compared with England, 1995-2015[J]. Neuro Oncol, 2020, 22(2): 301-302.
Pan C, Zhai Y, Li G, et al. NK cell-based immunotherapy and therapeutic perspective in gliomas[J]. Frontiers in Oncology, 2021, 11: 751183.
Cubitt CC, Mcclain E, Becker-Hapak M, et al. A novel fusion protein scaffold 18/12/TxM activates the IL-12, IL-15, and IL-18 receptors to induce human memory-like natural killer cells[J]. Mol Ther Oncolytics, 2022, 24: 585-596.
Roma S, Carpen L, Raveane A, et al. The dual role of innate lymphoid and natural killer cells in cancer. from phenotype to single-cell transcriptomics, functions and clinical uses[J]. Cancers (Basel), 2021, 13(20): 5042.
Raulet DH. Roles of the NKG2D immunoreceptor and its ligands[J]. Nat Rev Immunol, 2003, 3(10): 781-790.
Cho U, Yang SH, Yoo C. Estimation of the occurrence rates of IDH1 and IDH2 mutations in gliomas and the reconsideration of IDH-wildtype anaplastic astrocytomas: an institutional experience[J]. J Int Med Res, 2021, 49(6): 3000605211019258.
Ren F, Zhao Q, Huang L, et al. The R132H mutation in IDH1 promotes the recruitment of NK cells through CX3CL1/CX3CR1 chemotaxis and is correlated with a better prognosis in gliomas[J]. Immunol Cell Biol, 2019, 97(5): 457-469.
Gonzalez-Junca A, Driscoll KE, Pellicciotta I, et al. Autocrine TGFbeta is a survival factor for monocytes and drives immunosuppressive lineage commitment[J]. Cancer Immunol Res, 2019, 7(2): 306-320.
Shaim H, Shanley M, Basar R, et al. Targeting the alphav integrin/TGF-beta axis improves natural killer cell function against glioblastoma stem cells[J]. J Clin Invest, 2021, 131(14): e142116.
Castriconi R, Cantoni C, Della Chiesa M, et al. Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells[J]. Proc Natl Acad Sci U S A, 2003, 100(7): 4120-4125.
Close HJ, Stead LF, Nsengimana J, et al. Expression profiling of single cells and patient cohorts identifies multiple immunosuppressive pathways and an altered NK cell phenotype in glioblastoma[J]. Clin Exp Immunol, 2020, 200(1): 33-44.
Wei J, Barr J, Kong LY, et al. Glioblastoma cancer-initiating cells inhibit T-cell proliferation and effector responses by the signal transducers and activators of transcription 3 pathway[J]. Mol Cancer Ther, 2010, 9(1): 67-78.
Raychaudhuri B, Rayman P, Ireland J, et al. Myeloid-derived suppressor cell accumulation and function in patients with newly diagnosed glioblastoma[J]. Neuro Oncol, 2011, 13(6): 591-599.
Rodrigues JC, Gonzalez GC, Zhang L, et al. Normal human monocytes exposed to glioma cells acquire myeloid-derived suppressor cell-like properties[J]. Neuro Oncol, 2010, 12(4): 351-365.
Laudati E, Curro D, Navarra P, et al. Blockade of CCR5 receptor prevents M2 microglia phenotype in a microglia-glioma paradigm[J]. Neurochem Int, 2017, 108: 100-108.
Held-Feindt J, Hattermann K, Muerkoster SS, et al. CX3CR1 promotes recruitment of human glioma-infiltrating microglia/macrophages (GIMs)[J]. Exp Cell Res, 2010, 316(9): 1553-1566.
O'brien KL, Finlay DK. Immunometabolism and natural killer cell responses[J]. Nature Rev Immunol, 2019, 19(5): 282-290.
Dekker LJM, Verheul C, Wensveen N, et al. Effects of the IDH1 R132H mutation on the energy metabolism: a comparison between tissue and corresponding primary glioma cell cultures[J]. ACS Omega, 2022, 7(4): 3568-3578.
Holl EK, Frazier VN, Landa K, et al. Examining peripheral and tumor cellular immunome in patients with cancer[J]. Front Immunol, 2019, 10: 1767.
Griessmair L, Pirringer L, Mountford S, et al. Expression of IL-37 correlates with immune cell infiltrate and fibrosis in pediatric autoimmune liver diseases[J]. J Pediatr Gastroenterol Nutr, 2022, 74(6):742-749.
Sivori S, Parolini S, Marcenaro E, et al. Involvement of natural cytotoxicity receptors in human natural killer cell-mediated lysis of neuroblastoma and glioblastoma cell lines[J]. J Neuroimmunol, 2000, 107(2): 220-225.
Krenzlin H, Behera P, Lorenz V, et al. Cytomegalovirus promotes murine glioblastoma growth via pericyte recruitment and angiogenesis[J]. J Clin Invest, 2019, 129(4): 1671-1683.
Lu J, Li H, Chen Z, et al. Identification of 3 subpopulations of tumor-infiltrating immune cells for malignant transformation of low-grade glioma[J]. Cancer Cell International, 2019, 19: 265.
Mostafa H, Pala A, Hogel J, et al. Immune phenotypes predict survival in patients with glioblastoma multiforme[J]. J Hematol Oncol, 2016, 9(1): 77.
Tseng HC, Inagaki A, Bui VT, et al. Differential targeting of stem cells and differentiated glioblastomas by NK cells[J]. Journal of Cancer, 2015, 6(9): 866-876.
Zeng X, Yao D, Liu L, et al. Terminal differentiation of bone marrow NK cells and increased circulation of TIGIT(+) NK cells may be related to poor outcome in acute myeloid leukemia[J]. Asia Pac J Clin Oncol, 2022, 18(4): 456-464..
Razavi SM, Lee KE, Jin BE, et al. Immune evasion strategies of glioblastoma[J]. Front Surg, 2016, 3: 11.
Zhang X, Kim WJ, Rao AV, et al. In vivo efficacy of decitabine as a natural killer cell-mediated immunotherapy against isocitrate dehydrogenase mutant gliomas[J]. Neurosurg Focus, 2022, 52(2): E3.
Horing E, Podlech O, Silkenstedt B, et al. The histone deacetylase inhibitor trichostatin a promotes apoptosis and antitumor immunity in glioblastoma cells[J]. Anticancer Res, 2013, 33(4): 1351-1360.
Gauthier L, Morel A, Anceriz N, et al. Multifunctional natural killer cell engagers targeting NKp46 trigger protective tumor immunity[J]. Cell, 2019, 177(7): 1701-1713. e16.
Ferrari De Andrade L, Tay RE, Pan D, et al. Antibody-mediated inhibition of MICA and MICB shedding promotes NK cell-driven tumor immunity[J]. Science, 2018, 359(6383): 1537-1542.
Andre P, Denis C, Soulas C, et al. Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both t and NK cells[J]. Cell, 2018, 175(7): 1731-1743. e13.
Meng X, Zhao Y, Han B, et al. Dual functionalized brain-targeting nanoinhibitors restrain temozolomide-resistant glioma via attenuating EGFR and MET signaling pathways[J]. Nat Commun, 2020, 11(1): 594.
Galstyan A, Markman JL, Shatalova ES, et al. Author correction: blood-brain barrier permeable nano immunoconjugates induce local immune responses for glioma therapy[J]. Nat Commun, 2020, 11(1): 6170.
Barrow AD, Colonna M. Tailoring Natural Killer cell immunotherapy to the tumour microenvironment[J]. Semin Immunol, 2017, 31: 30-36.
Liu C, He Y, Feng X, et al. Expression of EPHA5 in lung adenocarcinoma is associated with lymph node metastasis and EGFR mutation[J]. APMIS, 2022, 130(6): 338-345.
Genssler S, Burger MC, Zhang C, et al. Dual targeting of glioblastoma with chimeric antigen receptor-engineered natural killer cells overcomes heterogeneity of target antigen expression and enhances antitumor activity and survival[J]. Oncoimmunology, 2016, 5(4): e1119354.
Shams A, Shabani R, Asgari H, et al. In vitro elimination of EL4 cancer cells from spermatogonia stem cells by miRNA-143- and 206-loaded folic acid-conjugated PLGA nanoparticles[J]. Nanomedicine (Lond), 2022, 17(8): 531-545.
Ma R, Lu T, Li Z, et al. An oncolytic virus expressing IL15/IL15Rα combined with off-the-shelf EGFR-CAR NK cells targets glioblastoma[J]. Cancer Res, 2021, 81(13): 3635-3648.
Brown CE, Badie B, Barish ME, et al. Bioactivity and safety of IL13Ralpha2-redirected chimeric antigen receptor CD8+ T Cells in patients with recurrent glioblastoma[J]. Clin Cancer Res, 2015, 21(18): 4062-4072.
Zhang C, Burger MC, Jennewein L, et al. ErbB2/HER2-specific NK cells for targeted therapy of glioblastoma[J]. J Natl Cancer Inst, 2016, 108(5). doi: 10.1093/jnci/djv375http://dx.doi.org/10.1093/jnci/djv375.
Dar TB, Henson RM, Shiao SL. Targeting innate immunity to enhance the efficacy of radiation therapy[J]. Frontiers in Immunology, 2018, 9: 3077.
Sevenich L. Turning "cold" into "hot" tumors-opportunities and challenges for radio-immunotherapy against primary and metastatic brain cancers[J]. Frontiers in Oncology, 2019, 9: 163.
Gras Navarro A, Espedal H, Joseph JV, et al. Pretreatment of glioblastoma with bortezomib potentiates natural killer cell cytotoxicity through TRAIL/DR5 mediated apoptosis and prolongs animal survival[J]. Cancers (Basel), 2019, 11(7): 996.
Cozar B, Greppi M, Carpentier S, et al. Tumor-infiltrating natural killer cells[J]. Cancer Discovery, 2021, 11(1): 34-44.
Tassinari V, Cesarini V, Tomaselli S, et al. ADAR1 is a new target of METTL3 and plays a pro-oncogenic role in glioblastoma by an editing-independent mechanism[J]. Genome Biol, 2021, 22(1): 51.
Chang YZ, Chai RC, Pang B, et al. METTL3 enhances the stability of MALAT1 with the assistance of HuR via m6A modification and activates NF-kappaB to promote the malignant progression of IDH-wildtype glioma[J]. Cancer Letters, 2021, 511: 36-46.
Zhou Z, Zhang J, Xu C, et al. An integrated model of N6-methyladenosine regulators to predict tumor aggressiveness and immune evasion in pancreatic cancer[J]. EBioMedicine, 2021, 65: 103271.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构