中山大学附属第一医院胸外科,广东 广州 510062
郑少毅,研士生,研究方向:食管癌、肺癌的基础与临床,E-mail: zhengshy37@mail2.sysu.edu.cn
纸质出版日期:2023-05-20,
收稿日期:2022-09-13,
扫 描 看 全 文
郑少毅,雷艺炎.从多组学角度探讨食管鳞状细胞癌的免疫相关特征[J].中山大学学报(医学科学版),2023,44(03):519-527.
ZHENG Shao-yi,LEI Yi-yan.Immune-related Features of Esophageal Squamous Cell Carcinoma:[J].Journal of Sun Yat-sen University(Medical Sciences),2023,44(03):519-527.
郑少毅,雷艺炎.从多组学角度探讨食管鳞状细胞癌的免疫相关特征[J].中山大学学报(医学科学版),2023,44(03):519-527. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2023.0321.
ZHENG Shao-yi,LEI Yi-yan.Immune-related Features of Esophageal Squamous Cell Carcinoma:[J].Journal of Sun Yat-sen University(Medical Sciences),2023,44(03):519-527. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2023.0321.
食管鳞状细胞癌是亚太地区常见的恶性肿瘤,尤其是在中国发病率高,尽管如今医疗技术的进步使患者的生存率有所提高,但发病率仍较高。随着免疫治疗在晚期恶性肿瘤患者中取得显著的生存获益,如肺癌、乳腺癌、结肠癌等,免疫治疗开始成为肿瘤研究的热点,同样地,在食管鳞状细胞癌的相关临床研究中,免疫治疗也表现出良好的生存获益。然而,恶性肿瘤的生物学功能和基因表达调控是复杂多变的,单一的组学研究得出的结论往往不够全面,而多组学分析能够将多个组学的内容进行综合分析,从而对肿瘤的研究能更全面和深入。然而,目前在食管鳞状细胞癌的免疫相关研究中,大多数仍集中于单一组学的研究,尤以基因组学为主,存在局限性及片面性。因此,本综述通过文献学习,拟从多组学的角度出发,探讨和总结了食管鳞状细胞癌中的免疫相关特征。
Esophageal squamous cell carcinoma is a common malignancy in the Asia-Pacific region, especially in China, where the morbidity remains high in spite of the improved overall survival due to advances in medical technology. Immunotherapy becomes a hot spot in recent tumor research when it has provided significant survival benefits in patients with advanced malignant tumors, such as lung cancer, breast cancer, colon cancer, etc. In esophageal squamous cell carcinoma, immunotherapy promotes survival benefit as well. However, because of the complex and changeable biological functions and gene expression regulation of malignant tumors, the conclusions based on a single-omics analysis are often incomprehensive. Currently, most of the immune-related studies on esophageal squamous cell carcinoma are still confined to a single-omics study like genomics, with limitations and one-sidedness. Since multi-omics analysis helps us better understand tumors from a wider and deeper perspective, this review explores and summarizes immune-related features of esophageal squamous cell carcinoma from a multi-omics perspective.
食管鳞状细胞癌免疫特征免疫治疗多组学分析文献综述
esophageal squamous cell carcinomaimmune featuresimmunotherapymulti-omics analysisliterature review
Morgan E, Soerjomataram I, Rumgay H, et al. The global landscape of esophageal squamous cell carcinoma and esophageal adenocarcinoma incidence and mortality in 2020 and projections to 2040: New Estimates From GLOBOCAN 2020 [J]. Gastroenterology, 2022, 163(3): 649-658.
Xiao Y, Bi M, Guo H, et al. Multi-omics approaches for biomarker discovery in early ovarian cancer diagnosis [J]. EBioMedicine, 2022, 79: 104001. doi: 10.1016/j.ebiom.2022.104001http://dx.doi.org/10.1016/j.ebiom.2022.104001.
Mac, Wu M, Ma S. Analysis of cancer omics data: a selective review of statistical techniques [J]. Brief Bioinform, 2022, 23(2). doi: 10.1093/bib/bbab585http://dx.doi.org/10.1093/bib/bbab585.
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation [J]. Cell, 2011, 144(5): 646-674.
Luo H, Lu J, Bai Y, et al. Effect of camrelizumab vs placebo added to chemotherapy on survival and progression-free survival in patients with advanced or metastatic esophageal squamous cell carcinoma: the ESCORT-1st randomized clinical trial [J]. Jama, 2021, 326(10): 916-925.
Hegde PS, Chen DS. Top 10 challenges in cancer immunotherapy [J]. Immunity, 2020, 52(1): 17-35.
Liang J, Wang Y, Cai L, et al. Comparative genomic analysis reveals genetic variations in multiple primary esophageal squamous cell carcinoma of chinese population [J]. Front Oncol, 2022, 12: 868301. doi: 10.3389/fonc.2022.868301http://dx.doi.org/10.3389/fonc.2022.868301.
Naseri A, Salehi-pourmehr H, Majidazar R, et al. Systematic review and meta-analysis of the most common genetic mutations in esophageal squamous cell carcinoma [J]. J Gastrointest Cancer, 2022, 53(4): 1040-1049.
Hassin O, Nataraj NB, Shreberk-shaked M, et al. Different hotspot p53 mutants exert distinct phenotypes and predict outcome of colorectal cancer patients [J]. Nat Commun, 2022, 13(1): 2800. doi: 10.1038/s41467-022-30481-7http://dx.doi.org/10.1038/s41467-022-30481-7.
Su R, Cai L, Xiong P, et al. TLR3 expression is a potential prognosis biomarker and shapes the immune-active tumor microenvironment in esophageal squamous cell carcinoma [J]. J Inflamm Res, 2022, 15: 1437-1456.
Feng Z, Qu J, Liu X, et al. Integrated bioinformatics analysis of differentially expressed genes and immune cell infiltration characteristics in esophageal squamous cell carcinoma [J]. Sci Rep, 2021, 11(1): 16696. doi: 10.1038/s41598-021-96274-yhttp://dx.doi.org/10.1038/s41598-021-96274-y.
Zhang C, Luo Y, Zhang Z, et al. Identification of a prognostic immune signature for esophageal squamous cell carcinoma to predict survival and inflammatory landscapes [J]. Front Cell Dev Biol, 2020, 8. doi: 10.3389/fcell.2022.580005http://dx.doi.org/10.3389/fcell.2022.580005.
Campbell JD, Yau C, Bowlby R, et al. Genomic, pathway network, and immunologic features distinguishing squamous carcinomas [J]. Cell Rep, 2018, 23(1): 194-212.e6.
Bagchi S, Yuan R, Engleman EG. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance [J]. Annu Rev Pathol, 2021, 16: 223-249.
Zhang W, Wang P, Pang Q. Immune checkpoint inhibitors for esophageal squamous cell carcinoma: a narrative review [J]. Ann Transl Med, 2020, 8(18): 1193. doi: 10.21037/atm-20-4625http://dx.doi.org/10.21037/atm-20-4625.
Sun J M, Shen L, Shah MA, et al. Pembrolizumab plus chemotherapy versus chemotherapy alone for first-line treatment of advanced oesophageal cancer (KEYNOTE-590): a randomised, placebo-controlled, phase 3 study [J]. Lancet, 2021, 398(10302): 759-771.
Kojima T, Shah MA, Muro K, et al. Randomized phase III KEYNOTE-181 study of pembrolizumab versus chemotherapy in advanced esophageal cancer [J]. J Clin Oncol, 2020, 38(35): 4138-4148.
Kato K, Cho BC, Takahashi M, et al. Nivolumab versus chemotherapy in patients with advanced oesophageal squamous cell carcinoma refractory or intolerant to previous chemotherapy (ATTRACTION-3): a multicentre, randomised, open-label, phase 3 trial [J]. Lancet Oncol, 2019, 20(11): 1506-1517.
Kelly RJ, Ajani JA, Kuzdzal J, et al. Adjuvant nivolumab in resected esophageal or gastroesophageal junction cancer [J]. N Engl J Med, 2021, 384(13): 1191-1203.
Yamamoto S, Kato K. JUPITER-06 establishes immune checkpoint inhibitors as essential first-line drugs for the treatment of advanced esophageal squamous cell carcinoma [J]. Cancer Cell, 2022, 40(3): 238-240.
Lu Z, Wang J, Shu Y, et al. Sintilimab versus placebo in combination with chemotherapy as first line treatment for locally advanced or metastatic oesophageal squamous cell carcinoma (ORIENT-15): multicentre, randomised, double blind, phase 3 trial [J]. Bmj, 2022, 377: e068714. doi: 10.1136/bmj-2021-068714http://dx.doi.org/10.1136/bmj-2021-068714.
Doki Y, Ajani J A, Kato K, et al. Nivolumab combination therapy in advanced esophageal squamous-cell carcinoma [J]. N Engl J Med, 2022, 386(5): 449-462.
Lin DC, Wang MR, Koeffler HP. Genomic and epigenomic aberrations in esophageal squamous cell carcinoma and implications for patients [J]. Gastroenterology, 2018, 154(2): 374-389.
Shigaki H, Baba Y, Watanabe M, et al. LINE-1 hypomethylation in noncancerous esophageal mucosae is associated with smoking history [J]. Ann Surg Oncol, 2012, 19(13): 4238-4243.
Yang SH, Li S L, Dong ZM, et al. Epigenetic inactivation of Wnt inhibitory factor-1 in human esophageal squamous cell carcinoma [J]. Oncol Res, 2012, 20(2-3): 123-130.
Takahashi T, Yamahsita S, Matsuda Y, et al. ZNF695 methylation predicts a response of esophageal squamous cell carcinoma to definitive chemoradiotherapy [J]. J Cancer Res Clin Oncol, 2015, 141(3): 453-463.
Min Q, Wang Y, Wu Q, et al. Genomic and epigenomic evolution of acquired resistance to combination therapy in esophageal squamous cell carcinoma [J]. JCI Insight, 2021, 6(17). doi: 10.1172/jci.insight.150203http://dx.doi.org/10.1172/jci.insight.150203.
Huang E, Fu J, Yu Q, et al. CircRNA hsa_circ_0004771 promotes esophageal squamous cell cancer progression via miR-339-5p/CDC25A axis [J]. Epigenomics, 2020, 12(7): 587-603.
Nakazato H, Takeshima H, Kishino T, et al. Early-stage induction of SWI/SNF mutations during esophageal squamous cell carcinogenesis [J]. PLoS One, 2016, 11(1): e0147372. doi: 10.1371/journal.pone.0147372http://dx.doi.org/10.1371/journal.pone.0147372.
Kishino T, Niwa T, Yamashita S, et al. Integrated analysis of DNA methylation and mutations in esophageal squamous cell carcinoma [J]. Mol Carcinog, 2016, 55(12): 2077-2088.
Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis [J]. Nat Med, 2013, 19(11): 1423-1437.
Wu Q, You L, Nepovimova E, et al. Hypoxia-inducible factors: master regulators of hypoxic tumor immune escape [J]. J Hematol Oncol, 2022, 15(1): 77. doi: 10.1186/s13045-022-01292-6http://dx.doi.org/10.1186/s13045-022-01292-6.
Jia Z, Jia J, Yao L, et al. Crosstalk of exosomal non-coding RNAs in the tumor microenvironment: novel frontiers [J]. Front Immunol, 2022, 13: 900155. doi: 10.3389/fimmu.2022.900155http://dx.doi.org/10.3389/fimmu.2022.900155.
Ma X, Guo Z, Wei X, et al. Spatial distribution and predictive significance of dendritic cells and macrophages in esophageal cancer treated with combined chemoradiotherapy and PD-1 blockade [J]. Front Immunol, 2021, 12: 786429. doi: 10.3389/fimmu.2021.786429http://dx.doi.org/10.3389/fimmu.2021.786429.
Zhao Z, Yang S, Zhou A, et al. Small extracellular vesicles in the development, diagnosis, and possible therapeutic application of esophageal squamous cell carcinoma [J]. Front Oncol, 2021, 11: 732702. doi:10.3389/fonc.2021.732702http://dx.doi.org/10.3389/fonc.2021.732702.
Kaymak I, Williams KS, Cantor JR, et al. Immunometabolic interplay in the tumor microenvironment [J]. Cancer Cell, 2021, 39(1): 28-37.
Mir SA, Rajagopalan P, Jain AP, et al. LC-MS-based serum metabolomic analysis reveals dysregulation of phosphatidylcholines in esophageal squamous cell carcinoma [J]. J Proteomics, 2015, 127(Pt A): 96-102.
Liu Y, Chen H, Sun Z, et al. Molecular mechanisms of ethanol-associated oro-esophageal squamous cell carcinoma [J]. Cancer Lett, 2015, 361(2): 164-173.
Wang L, Chen J, Chen L, et al. 1H-NMR based metabonomic profiling of human esophageal cancer tissue [J]. Mol Cancer, 2013, 12: 25. doi: 10.1186/1476-4598-12-25http://dx.doi.org/10.1186/1476-4598-12-25.
Liu R, Peng Y, Li X, et al. Identification of plasma metabolomic profiling for diagnosis of esophageal squamous-cell carcinoma using an UPLC/TOF/MS platform [J]. Int J Mol Sci, 2013, 14(5): 8899-9911.
Xu J, Li J, Zhang R, et al. Development of a metabolic pathway-based pseudo-targeted metabolomics method using liquid chromatography coupled with mass spectrometry [J]. Talanta, 2019, 192: 160-168.
Zhu Q, Huang L, Yang Q, et al. Metabolomic analysis of exosomal-markers in esophageal squamous cell carcinoma [J]. Nanoscale, 2021, 13(39): 16457-16464.
Zhang Y, Wang J, Dai N, et al. Alteration of plasma metabolites associated with chemoradiosensitivity in esophageal squamous cell carcinoma via untargeted metabolomics approach [J]. BMC Cancer, 2020, 20(1): 835. doi: 10.1186/s12885-020-07336-9http://dx.doi.org/10.1186/s12885-020-07336-9.
Park JC, Barahona-torres N, Jang SY, et al. Multi-omics-based autophagy-related untypical subtypes in patients with cerebral amyloid pathology [J]. Adv Sci (Weinh), 2022, 9(23): e2201212. doi:10.1002/advs.202201212http://dx.doi.org/10.1002/advs.202201212.
Liu SY, Liu SM, Zhong WZ, et al. Targeted therapy in early stage non-small cell lung cancer [J]. Curr Treat Options Oncol, 2022, 23(9): 1169-1184.
Pierre-jean M, Deleuze J F, Le Floch E, et al. Clustering and variable selection evaluation of 13 unsupervised methods for multi-omics data integration [J]. Brief Bioinform, 2020, 21(6): 2011-2030.
Hernandez-sanchez A, Grossman M, Yeung K, et al. Vaccines for immunoprevention of DNA mismatch repair deficient cancers [J]. J Immunother Cancer, 2022, 10(6). doi: 10.1136/jitc-2021--004416http://dx.doi.org/10.1136/jitc-2021--004416.
Wang Q, Shen X, Chen G, et al. Drug resistance in colorectal cancer: from mechanism to clinic [J]. Cancers (Basel), 2022, 14(12). doi: 10.3390/cancers14122928http://dx.doi.org/10.3390/cancers14122928.
Indini A, Massi D, Pirro M, et al. Targeting inflamed and non-inflamed melanomas: biological background and clinical challenges [J]. Semin Cancer Biol, 2022, 96(Pt 2): 477-490.
王敏丽, 邓同兴, 陈彦锋, 等. TFF1甲基化状态对食管鳞状细胞癌TE1和TE13细胞凋亡的影响[J]. 现代预防医学, 2021, 48(8): 1468-1472.
Wang ML, Deng TX, Chen YF, et al. Effect of TFF1 methylation status on apoptosis of esophageal squamous cell carcinoma TE1 and TE13 cells[J]. Modern Prevent Med, 2021, 48(8): 1468-1472.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构