吉林大学第一医院肾病科,吉林 长春 130021
罗婧,硕士生,研究方向:肾病临床研究,E-mail:jingluo0710@163.com
纸质出版日期:2023-05-20,
收稿日期:2022-11-03,
扫 描 看 全 文
罗婧,远航.组蛋白化学修饰与12/15-脂氧化酶代谢途径在糖尿病肾病发展中的作用[J].中山大学学报(医学科学版),2023,44(03):534-540.
LUO Jing,YUAN Hang.Role of Histone Modifications and 12/15-lipoxygenase Metabolic Pathway in the Development of Diabetic Kidney Disease[J].Journal of Sun Yat-sen University(Medical Sciences),2023,44(03):534-540.
罗婧,远航.组蛋白化学修饰与12/15-脂氧化酶代谢途径在糖尿病肾病发展中的作用[J].中山大学学报(医学科学版),2023,44(03):534-540. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2023.0323.
LUO Jing,YUAN Hang.Role of Histone Modifications and 12/15-lipoxygenase Metabolic Pathway in the Development of Diabetic Kidney Disease[J].Journal of Sun Yat-sen University(Medical Sciences),2023,44(03):534-540. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2023.0323.
糖尿病肾病(DKD)是糖尿病患者最常见的微血管并发症之一,也是终末期肾衰竭的主要原因,其发病机制比较复杂。大量实验证实表观遗传学机制包括组蛋白化学修饰与脂质代谢产物12/15脂氧化酶(12/15-LO)参与调控DKD的特征性病理生理过程,本综述将从他们之间的相互作用关系出发,进一步探讨DKD发病机制,为DKD的治疗提供新的研究方向。
Diabetic kidney disease (DKD) is one of the most common microvascular complications in patients with diabetes. DKD is also the main cause of end-stage renal failure, with very complex pathogenesis. A large number of experiments have confirmed that epigenetic mechanisms, including histone chemical modifications and lipid metabolites 12/15-lipoxygenase (12/15-LO), are involved in regulating the characteristic pathophysiological process of DKD, based on which, this review further explores the pathogenesis of DKD and provides the new research direction for DKD treatment.
糖尿病肾病12/15-脂氧化酶组蛋白化学修饰代谢记忆TGF-β
diabetic kidney disease (DKD)12/15-lipoxygenase (12/15-LO)histone chemical modificationsmetabolic memoryTGF-β
刘雪丽. 重磅!IDF《全球糖尿病地图(第10版)》完整版正式发布 [N]. 2022.08.13.
Liu XL.Blockbuster news! The full version of IDF Global diabetes Map (10th Edition) was officially released [N]. 2022.08.13.
Jager KJ, Kovesdy C, Langham R, et al. A single number for advocacy and communication-worldwide more than 850 million individuals have kidney diseases [J]. Nephrol Dial Transplant, 2019, 34(11): 1803-1805.
Ceriello A, Ihnat MA, Thorpe JE. Clinical review 2: The "metabolic memory": is more than just tight glucose control necessary to prevent diabetic complications? [J]. J Clin Endocrinol Metab, 2009, 94(2): 410-415.
Defronzo RA, Reeves WB, Awad AS. Pathophysiology of diabetic kidney disease: impact of SGLT2 inhibitors [J]. Nature Reviews Nephrology, 2021, 17(5): 319-334.
Shevalye H, Lupachyk S, Watcho P, et al. Prediabetic nephropathy as an early consequence of the high-calorie/high-fat diet: relation to oxidative stress [J]. Endocrinology, 2012, 153(3): 1152-1161.
Kato M, Natarajan R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory [J]. Nature Reviews Nephrology, 2019, 15(6): 327-345.
Kato M, Natarajan R. Diabetic nephropathy--emerging epigenetic mechanisms [J]. Nature Reviews Nephrology, 2014, 10(9): 517-530.
Reddy MA, Natarajan R. Epigenetics in diabetic kidney disease [J].J Am Soc Nephrol: JASN, 2011, 22(12): 2182-2185.
Hampsey M, Reinberg D. Tails of intrigue: phosphorylation of RNA polymerase Ⅱ mediates histone methylation [J]. Cell, 2003, 113(4): 429-432.
Gerber M, Shilatifard A. Transcriptional elongation by RNA polymerase Ⅱ and histone methylation [J]. J Biol Chem,2003, 278(29): 26303-26306.
Kurdistani SK, Grunstein M. Histone acetylation and deacetylation in yeast [J]. Nat Rev Mol Cell Biol, 2003, 4(4): 276-284.
Advani A, Huang Q, Thai K, et al. Long-term administration of the histone deacetylase inhibitor vorinostat attenuates renal injury in experimental diabetes through an endothelial nitric oxide synthase-dependent mechanism [J]. Am J Pathol, 2011, 178(5): 2205-2214.
Komers R, Mar D, Denisenko O, et al. Epigenetic changes in renal genes dysregulated in mouse and rat models of type 1 diabetes [J]. Laboratory Investigation, 2013, 93(5): 543-52.
Miao F, Smith DD, Zhang L, et al. Lymphocytes from patients with type 1 diabetes display a distinct profile of chromatin histone H3 lysine 9 dimethylation: an epigenetic study in diabetes [J]. Diabetes, 2008, 57(12): 3189-3198.
Li Y, Reddy MA, Miao F, et al. Role of the histone H3 lysine 4 methyltransferase, SET7/9, in the regulation of NF-kappaB-dependent inflammatory genes. Relevance to diabetes and inflammation [J]. J Biol Chem, 2008, 283(39): 26771-26781.
Kouzarides T. Chromatin modifications and their function [J]. Cell, 2007, 128(4): 693-705.
Pang M, Kothapally J, Mao H, et al. Inhibition of histone deacetylase activity attenuates renal fibroblast activation and interstitial fibrosis in obstructive nephropathy [J]. Am J Physiol Renal Physiol, 2009, 297(4).
Cordero-herrera I, Chen X, Ramos S, et al. (-)-Epicatechin attenuates high-glucose-induced inflammation by epigenetic modulation in human monocytes [J]. Eur J Nutr, 2017, 56(3): 1369-1373.
Miao F, Gonzalo IG, Lanting L, et al. In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions [J]. J Biol Chem, 2004, 279(17): 18091-18097.
Natarajan R. Epigenetic mechanisms in diabetic vascular complications and metabolic memory: the 2020 edwin bierman award lecture [J]. Diabetes, 2021, 70(2): 328-337.
Chen J, Guo Y, Zeng W, et al. ER stress triggers MCP-1 expression through SET7/9-induced histone methylation in the kidneys of db/db mice [J]. Am J Physiol Renal Physiol, 2014, 306(8): F916-F925.
Lee HA, Cho HM, Lee DY, et al. Tissue-specific upregulation of angiotensin-converting enzyme 1 in spontaneously hypertensive rats through histone code modifications [J]. Hypertension, 2012, 59(3): 621-626.
Hainsworth DP, Bebu I, Aiello LP, et al. Risk factors for retinopathy in type 1 diabetes: the DCCT/EDIC study [J]. Diabetes Care, 2019, 42(5): 875-882.
Miao F, Chen Z, Genuth S, et al. Evaluating the role of epigenetic histone modifications in the metabolic memory of type 1 diabetes [J]. Diabetes, 2014, 63(5): 1748-1762.
Ducasa GM, Mitrofanova A, Fornoni A. Crosstalk Between Lipids and Mitochondria in Diabetic Kidney Disease [J]. 2019, 19(12).doi:10.1007/s11892-019-1263-xhttp://dx.doi.org/10.1007/s11892-019-1263-x.
Proctor G, Jiang T, Iwahashi M, et al. Regulation of renal fatty acid and cholesterol metabolism, inflammation, and fibrosis in Akita and OVE26 mice with type 1 diabetes [J]. Diabetes, 2006, 55(9): 2502-2509.
Kim YS, Xu ZG, Reddy MA, et al. Novel interactions between TGF-{beta}1 actions and the 12/15-lipoxygenase pathway in mesangial cells [J].J Am Soc Nephrol : JASN, 2005, 16(2): 352-362.
Fukami K, Ueda S, Yamagishi SI, et al. AGEs activate mesangial TGF-beta-Smad signaling via an angiotensin Ⅱ type I receptor interaction [J]. Kidney International, 2004, 66(6): 2137-2147.
Monkawa T, Hiromura K, Wolf G, et al. The hypertrophic effect of transforming growth factor-beta is reduced in the absence of cyclin-dependent kinase-inhibitors p21 and p27 [J].J Am Soc Nephrol : JASN, 2002, 13(5): 1172-1178.
Abdel-wahab N, Weston BS, Roberts T, et al. Connective tissue growth factor and regulation of the mesangial cell cycle: role in cellular hypertrophy [J].J Am Soc Nephrol: JASN, 2002, 13(10): 2437-2445.
Zheng H, Whitman SA, Wu W, et al. Therapeutic potential of Nrf2 activators in streptozotocin-induced diabetic nephropathy [J]. Diabetes, 2011, 60(11): 3055-3066.
Guo Q, Li X, Han H, et al. Histone lysine methylation in TGF-β1 mediated p21 gene expression in rat mesangial cells [J]. BioMed Res Int, 2016, 2016: 6927234.
Sun G, Reddy MA, Yuan H, et al. Epigenetic histone methylation modulates fibrotic gene expression [J].J Am Soc Nephrol : JASN, 2010, 21(12): 2069-2080.
Yuan H, Reddy MA, Sun G, et al. Involvement of p300/CBP and epigenetic histone acetylation in TGF-β1-mediated gene transcription in mesangial cells [J]. Am J Physiol Renal Physiol, 2013, 304(5): F601-F613.
Jia Y, Reddy MA, Das S, et al. Dysregulation of histone H3 lysine 27 trimethylation in transforming growth factor-β1-induced gene expression in mesangial cells and diabetic kidney [J].J Biol Chem, 2019, 294(34): 12695-12707.
Chen S, Hoffman BB, Lee JS, et al. Cultured tubule cells from TGF-beta1 null mice exhibit impaired hypertrophy and fibronectin expression in high glucose [J]. Kidney International, 2004, 65(4): 1191-1204.
Dobrian AD, Morris MA, Taylor-fishwick DA, et al. Role of the 12-lipoxygenase pathway in diabetes pathogenesis and complications [J]. Pharmacology & Therapeutics, 2019, 195: 100-110.
Xu HZ, Chen YL, Wang WN, et al. 12-lipoxygenase inhibition on microalbuminuria in type-1 and type-2 diabetes is associated with changes of glomerular angiotensin Ⅱ type 1 receptor related to insulin resistance [J]. Int J Mol Sci, 2016, 17(5).
Yuan H, Lanting L, Xu ZG, et al. Effects of cholesterol-tagged small interfering RNAs targeting 12/15-lipoxygenase on parameters of diabetic nephropathy in a mouse model of type 1 diabetes [J]. Am J Physiol Renal Physiol, 2008, 295(2): F605-F617.
Singh NK, Rao GN. Emerging role of 12/15-Lipoxygenase (ALOX15) in human pathologies [J]. Progress In Lipid Research, 2019, 73: 28-45.
Yuan H, Reddy MA, Deshpande S, et al. Epigenetic histone modifications involved in profibrotic gene regulation by 12/15-lipoxygenase and its oxidized lipid products in diabetic nephropathy [J]. Antioxidants & Redox Signaling, 2016, 24(7): 361-375.
Coqueret O. New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? [J]. Trends Cell Biol, 2003, 13(2): 65-70.
Deliri H, Meller N, Kadakkal A, et al. Increased 12/15-lipoxygenase enhances cell growth, fibronectin deposition, and neointimal formation in response to carotid injury [J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31(1): 110-116.
Zhang YY, Wang WN, Su SS, et al. Roles of 12-Lipoxygenase and Its Interaction with Angiotensin Ⅱ on p21 and p27 Expression in Diabetic Nephropathy [J]. Nephron, 2019, 142(1): 61-70.
Cui YC, Liu N, Ma FZ, et al. Role of histone modification in 12-lipoxygenase-associated p21 gene regulation [J]. Molecular Medicine Reports, 2016, 14(4): 3978-3984.
Reddy MA, Adler SG, Kim YS, et al. Interaction of MAPK and 12-lipoxygenase pathways in growth and matrix protein expression in mesangial cells [J]. Am J Physiol Renal Physiol, 2002, 283(5): F985-F994.
Meng XM, Nikolic-paterson DJ, Lan HY. TGF-β: the master regulator of fibrosis [J]. Nature Reviews Nephrology, 2016, 12(6): 325-338.
Xu ZG, Yuan H, Lanting L, et al. Products of 12/15-lipoxygenase upregulate the angiotensin Ⅱ receptor [J].J Am Soc Nephrol: JASN, 2008, 19(3): 559-569.
Reddy MA, Sumanth P, Lanting L, et al. Losartan reverses permissive epigenetic changes in renal glomeruli of diabetic db/db mice [J]. Kidney Int, 2014, 85(2): 362-373.
Sasaki K, Doi S, Nakashima A, et al. Inhibition of SET domain-containing lysine methyltransferase 7/9 ameliorates renal fibrosis [J].J Am Soc Nephrol: JASN, 2016, 27(1): 203-215.
Frangogiannis N. Transforming growth factor-β in tissue fibrosis [J]. J Exp Med, 2020, 217(3): e20190103.
Aseem SO, Jalan-sakrikar N, Chi C, et al. Epigenomic evaluation of cholangiocyte transforming growth factor-β signaling identifies a selective role for histone 3 lysine 9 acetylation in biliary fibrosis [J]. Gastroenterology, 2021, 160(3): 889-905.
任咪咪, 高梦寒, 王婧, 等. 12/15-脂氧化酶基因敲除对肥胖相关性肾小球疾病模型小鼠肾组织的保护作用及其机制[J].吉林大学学报(医学版),2021, 47(6): 1337-1346.
Ren MM,Gao MH,Wang J,et al. Protective effect of 12/15-lipoxygenase gene knockout on kidney tissue of obesity-related glomerulopathy model mice and its mechanis[J].J Jilin Univ (Med Edit),2021, 47(6): 1337-1346.
0
浏览量
0
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构