1.中山大学中山医学院生物化学与分子生物学系
2.中山大学实验动物中心
3.广东省疾病模式动物技术研究中心, 广东 广州 510080
[ "蔡卫斌,医学博士,中山大学中山医学院教授、博士生导师。现任中山大学实验动物中心执行主任、中山大学深圳校区实验动物中心主任、广东省疾病模式动物工程技术研究中心主任,兼任中山大学实验动物使用与管理委员会(IACUC)执行主席、中山大学实验室安全委员会委员、广东省实验动物学会常务副理事长、广东省医学会心血管病分会基础学组委员、中国实验动物学会实验动物标准化专业委员会常务委员、中国实验动物学会实验动物设备工程专业委员会委员、中国实验动物学会实验动物模型鉴定与评价工作委员会委员、国家规划教材《医学实验动物学》(第3版,研究生用)副主编、国家规划教材《实验动物学》(第3版,本科生用)副主编。主要致力于心脏发育与损伤修复的分子基础研究、疾病模式动物研发与标准化,并注重以临床重大疾病为导向的应用基础研究。近年来在Nat Commun、Cell Reports、Circulation Research、Theranostics、Development等期刊发表SCI论文50余篇(第一作者或通讯作者24篇),发明专利和著作权授权6项。主持国家自然科学基金7项、国家科技重大专项分题2项、省部级基金共10余项,获资助科研经费800多万元。曾获教育部自然科学奖和广东省科学技术奖(二等奖,第三完成人)等奖励,入选广东省高等学校千百十工程培养对象,获得2020年度中国实验动物学会“优秀青年人才奖”。E-mail: caiwb@mail.sysu.edu.cn。" ]
纸质出版日期:2023-07-20,
收稿日期:2023-02-14,
扫 描 看 全 文
谭静,蔡卫斌.哺乳动物心肌代谢与心脏再生[J].中山大学学报(医学科学版),2023,44(04):560-569.
TAN Jing,CAI Wei-bin.Cardiomyocyte Energy Metabolism in Mammalian Cardiac Regeneration[J].Journal of Sun Yat-sen University(Medical Sciences),2023,44(04):560-569.
谭静,蔡卫斌.哺乳动物心肌代谢与心脏再生[J].中山大学学报(医学科学版),2023,44(04):560-569. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2023.0403.
TAN Jing,CAI Wei-bin.Cardiomyocyte Energy Metabolism in Mammalian Cardiac Regeneration[J].Journal of Sun Yat-sen University(Medical Sciences),2023,44(04):560-569. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2023.0403.
心血管疾病是目前全球重大的公共卫生问题,其中冠心病及急性心梗为主的心血管病死亡率处于持续上升阶段。由于成年哺乳动物心肌细胞的增殖能力非常有限,目前的治疗方法均无法逆转心肌受损后大量心肌细胞的丢失。哺乳动物心肌细胞的能量代谢胚胎期以糖酵解为主逐渐转变为出生后的脂肪酸氧化为主,而出生前后心肌细胞的能量代谢转变与其增殖能力变化高度相关。近几年来,通过诱导心肌细胞的代谢重编程促进心脏再生是心血管研究领域的前沿及热点。本文将就心肌细胞的生物学特性、诱导心肌再生的策略与研究进展,以及心脏代谢在其中的重要作用进行综述及展望。
Cardiovascular disease, such as coronary heart disease and acute myocardial infarction, is a leading cause of death globally. Due to the limited proliferative and regenerative capacity of adult mammalian cardiomyocytes (CMs), any of the current therapies cannot reverse the massive loss of CMs and subsequent fibrosis resulting from cardiac injury. Mammals mainly rely on glycolysis in the embryonic stage and fatty acid oxidation after birth for energy production. Recent reports have indicated that this metabolic pattern switch is closely related to the loss of CM proliferation. In this review, we summarize the biological characteristics of CMs and advances in heart regeneration, meanwhile shed light on the important role of CMs energy metabolism in cardiac regeneration.
心肌细胞能量代谢心脏再生代谢重编程心肌损伤与修复
cardiomyocyte energy metabolismcardiac regenerationmetabolic reprogrammingmyocardial injury and repair
Writing C, Maddox TM, Januzzi JL, et al. 2021 update to the 2017 ACC expert consensus decision pathway for optimization of heart failure treatment: answers to 10 pivotal issues about heart failure with reduced ejection fraction: a report of the American college of cardiology solution set oversight committee[J]. J Am Coll Cardiol, 2021, 77(6): 772-810.
王小文, 郑哲, 黄洁. 脑卒中供者心脏的心肌损伤机制与临床研究进展[J]. 器官移植, 2023, 14(1): 42-48.
Wang XW, Zheng Z, Huang J. Clinical research progress and mechanism on myocardial injury in hearts from donors with stroke[J]. Organ Transpl, 2023, 14(1): 42-48.
Henderson CA, Gomez CG, Novak SM, et al. Overview of the muscle cytoskeleton[J]. Compr Physiol, 2017, 7(3): 891-944.
Lopaschuk GD, Jaswal JS. Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation[J]. J Cardiovasc Pharmacol, 2010, 56(2): 130-140.
Taegtmeyer H, Young ME, Lopaschuk GD, et al. Assessing cardiac metabolism: a scientific statement from the American heart association[J]. Circ Res, 2016, 118(10): 1659-1701.
Karbassi E, Fenix A, Marchiano S, et al. Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine[J]. Nat Rev Cardiol, 2020, 17(6): 341-359.
Porrello ER, Mahmoud AI, Simpson E, et al. Transient regenerative potential of the neonatal mouse heart[J]. Science, 2011, 331(6020): 1078-1080.
Ye L, D'agostino G, Loo SJ, et al. Early regenerative capacity in the porcine heart[J]. Circulation, 2018, 138(24): 2798-2808.
Zhu W, Zhang E, Zhao M, et al. Regenerative potential of neonatal porcine hearts[J]. Circulation, 2018, 138(24): 2809-2816.
Wesselhoeft H, Fawcett JS, Johnson AL. Anomalous origin of the left coronary artery from the pulmonary trunk. Its clinical spectrum, pathology, and pathophysiology, based on a review of 140 cases with seven further cases[J]. Circulation, 1968, 38(2): 403-425.
Tsang V, Yacoub M, Sridharan S, et al. Late donor cardiectomy after paediatric heterotopic cardiac transplantation[J]. Lancet, 2009, 374(9687): 387-392.
Mohamed TMA, Ang YS, Radzinsky E, et al. Regulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regeneration[J]. Cell, 2018, 173(1): 104-116. e12.
Xiang FL, Guo M, Yutzey KE. Overexpression of Tbx20 in adult cardiomyocytes promotes proliferation and improves cardiac function after myocardial infarction[J]. Circulation, 2016, 133(11): 1081-1092.
Mahmoud AI, Kocabas F, Muralidhar SA, et al. Meis1 regulates postnatal cardiomyocyte cell cycle arrest[J]. Nature, 2013, 497(7448): 249-253.
Heallen T, Zhang M, Wang J, et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size[J]. Science, 2011, 332(6028): 458-461.
Lin Z, Von Gise A, Zhou P, et al. Cardiac-specific YAP activation improves cardiac function and survival in an experimental murine MI model[J]. Circ Res, 2014, 115(3): 354-363.
Xin M, Kim Y, Sutherland LB, et al. Hippo pathway effector Yap promotes cardiac regeneration[J]. Proc Natl Acad Sci USA, 2013, 110(34): 13839-13844.
Patterson M, Barske L, van Handel B, et al. Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration[J]. Nat Genet, 2017, 49(9): 1346-1353.
Gonzalez-Rosa JM, Sharpe M, Field D, et al. Myocardial polyploidization creates a barrier to heart regeneration in zebrafish[J]. Dev Cell, 2018, 44(4): 433-446. e7.
Han L, Choudhury S, Mich-Basso JD, et al. Lamin B2 levels regulate polyploidization of cardiomyocyte nuclei and myocardial regeneration[J]. Dev Cell, 2020, 53(1): 42-59. e11.
Han L, Mich-Basso JD, Li Y, et al. Changes in nuclear pore numbers control nuclear import and stress response of mouse hearts[J]. Dev Cell, 2022, 57(20): 2397-2411. e9.
Puente BN, Kimura W, Muralidhar SA, et al. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response[J]. Cell, 2014, 157(3): 565-579.
Kimura W, Xiao F, Canseco DC, et al. Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart[J]. Nature, 2015, 523(7559): 226-230.
Nakada Y, Canseco DC, Thet S, et al. Hypoxia induces heart regeneration in adult mice[J]. Nature, 2017, 541(7636): 222-227.
Chattergoon NN. Thyroid hormone signaling and consequences for cardiac development[J]. J Endocrinol, 2019, 242(1): T145-T160.
Chattergoon NN, Giraud GD, Thornburg KL. Thyroid hormone inhibits proliferation of fetal cardiac myocytes in vitro[J]. J Endocrinol, 2007, 192(2): R1-R8.
Hirose K, Payumo AY, Cutie S, et al. Evidence for hormonal control of heart regenerative capacity during endothermy acquisition[J]. Science, 2019, 364(6436): 184-188.
Tyser RC, Miranda AM, Chen CM, et al. Calcium handling precedes cardiac differentiation to initiate the first heartbeat[J]. Elife, 2016, 5: e17113.
Gibb AA, Hill BG. Metabolic coordination of physiological and pathological cardiac remodeling[J]. Circ Res, 2018, 123(1): 107-128.
Lopaschuk GD, Witters LA, Itoi T, et al. Acetyl-CoA carboxylase involvement in the rapid maturation of fatty acid oxidation in the newborn rabbit heart[J]. J Biol Chem, 1994, 269(41): 25871-25878.
Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart[J]. Physiol Rev, 2005, 85(3): 1093-1129.
Fajardo VM, Feng I, Chen BY, et al. GLUT1 overexpression enhances glucose metabolism and promotes neonatal heart regeneration[J]. Sci Rep, 2021, 11(1): 8669.
Magadum A, Singh N, Kurian AA, et al. Pkm2 regulates cardiomyocyte cell cycle and promotes cardiac regeneration[J]. Circulation, 2020, 141(15): 1249-1265.
Cardoso AC, Lam NT, Savla JJ, et al. Mitochondrial substrate utilization regulates cardiomyocyte cell cycle progression[J]. Nat Metab, 2020, 2(2): 167-178.
Lalowski MM, Björk S, Finckenberg P, et al. Characterizing the key metabolic pathways of the neonatal mouse heart using a quantitative combinatorial omics approach[J]. Front Physiol, 2018, 9: 365.
Talman V, Teppo J, Pöhö P, et al. Molecular atlas of postnatal mouse heart development[J]. J Am Heart Assoc, 2018, 7(20): e010378.
Chong D, Gu Y, Zhang T, et al. Neonatal ketone body elevation regulates postnatal heart development by promoting cardiomyocyte mitochondrial maturation and metabolic reprogramming[J]. Cell Discov, 2022, 8(1): 106.
Chen Y, Lüttmann FF, Schoger E, et al. Reversible reprogramming of cardiomyocytes to a fetal state drives heart regeneration in mice[J]. Science, 2021, 373(6562): 1537-1540.
Cheng YY, Gregorich Z, Prajnamitra RP, et al. Metabolic changes associated with cardiomyocyte dedifferentiation enable adult mammalian cardiac regeneration[J]. Circulation, 2022, 146(25): 1950-1967.
Fukuda R, Marín-Juez R, El-Sammak H, et al. Stimulation of glycolysis promotes cardiomyocyte proliferation after injury in adult zebrafish[J]. EMBO Rep, 2020, 21(8): e49752.
Cao T, Liccardo D, Lacanna R, et al. Fatty acid oxidation promotes cardiomyocyte proliferation rate but does not change cardiomyocyte number in infant mice[J]. Front Cell Dev Biol, 2019, 7: 42.
Li Y, Yang M, Tan J, et al. Targeting ACSL1 promotes cardiomyocyte proliferation and cardiac regeneration[J]. Life Sci, 2022, 294: 120371.
Kula-Alwar D, Prag HA, Krieg T. Targeting succinate metabolism in ischemia/reperfusion injury[J]. Circulation, 2019, 140(24): 1968-1970.
Bae J, Salamon RJ, Brandt EB, et al. Malonate promotes adult cardiomyocyte proliferation and heart regeneration[J]. Circulation, 2021, 143(20): 1973-1986.
Abouleisa RRE, Mcnally L, Salama ABM, et al. Cell cycle induction in human cardiomyocytes is dependent on biosynthetic pathway activation[J]. Redox Biol, 2021, 46: 102094.
Zhang D, Ning J, Ramprasath T, et al. Kynurenine promotes neonatal heart regeneration by stimulating cardiomyocyte proliferation and cardiac angiogenesis[J]. Nat Commun, 2022, 13(1): 6371.
Vivien CJ, Hudson JE, Porrello ER. Evolution, comparative biology and ontogeny of vertebrate heart regeneration[J]. Npj Regen Med, 2016, 1: 16012.
Tan J, Yang M, Wang H, et al. Moderate heart rate reduction promotes cardiac regeneration through stimulation of the metabolic pattern switch[J]. Cell Rep, 2022, 38(10): 110468.
Payumo AY, Chen X, Hirose K, et al. Adrenergic-thyroid hormone interactions drive postnatal thermogenesis and loss of mammalian heart regenerative capacity[J]. Circulation, 2021, 144(12): 1000-1003.
Murashige D, Jang C, Neinast M, et al. Comprehensive quantification of fuel use by the failing and nonfailing human heart[J]. Science, 2020, 370(6514): 364-368.
Yang X, Rodriguez ML, Leonard A, et al. Fatty acids enhance the maturation of cardiomyocytes derived from human pluripotent stem cells[J]. Stem Cell Reports, 2019, 13(4): 657-668.
Nakano H, Minami I, Braas D, et al. Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis[J]. Elife, 2017, 6: e29330.
Wang WE, Li L, Xia X, et al. Dedifferentiation, proliferation, and redifferentiation of adult mammalian cardiomyocytes after ischemic injury[J]. Circulation, 2017, 136(9): 834-848.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构