暨南大学附属第一医院眼科,广东 广州 510630
李青青,研究方向:白内障
纸质出版日期:2023-07-20,
收稿日期:2023-03-15,
扫 描 看 全 文
李青青,刘莲.PANoptosis 的分子作用机制及其在致盲性眼病中的作用[J].中山大学学报(医学科学版),2023,44(04):576-581.
LI Qing-qing,LIU Lian.PANoptosis: Molecular Mechanism of Action and Effects on Blinding Eye Diseases[J].Journal of Sun Yat-sen University(Medical Sciences),2023,44(04):576-581.
李青青,刘莲.PANoptosis 的分子作用机制及其在致盲性眼病中的作用[J].中山大学学报(医学科学版),2023,44(04):576-581. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2023.0405.
LI Qing-qing,LIU Lian.PANoptosis: Molecular Mechanism of Action and Effects on Blinding Eye Diseases[J].Journal of Sun Yat-sen University(Medical Sciences),2023,44(04):576-581. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2023.0405.
以往研究认为各种细胞死亡途径有其独特的调控机制,近年来随着对细胞死亡途径的进一步研究发现各种途径之间存在串扰和协调,进而有研究提出一种新的细胞死亡途径:PANoptosis,认为PANoptosis是由PANoptosome复合物调节的炎症性程序性细胞死亡途径,具有细胞焦亡、细胞凋亡和/或坏死性凋亡的关键特征,并不能被细胞焦亡、细胞凋亡、坏死性凋亡中任意一种死亡方式单独表征。特定的触发因素如病毒、细菌及真菌感染可以诱导宿主以PANoptosis的途径死亡。本文就PANoptosis的相关通路、调节剂以及在致盲性眼病中的潜在作用进行相关综述。
Previous studies focused on the unique regulatory mechanisms of different cell death pathways. However, recent studies highlight crosstalk and co-ordination between these pathways and initiate a new cell death process called PANoptosis (pyroptosis, apoptosis, necroptosis). PANoptosis is an inflammatory programmed cell death pathway regulated by the PANoptosome complex with critical features of pyroptosis, and/or necroptosis but cannot be characterized by any of the death modes of pyroptosis, apoptosis or necroptosis alone. By activating the PANoptosis pathway, some triggers like bacterial, viral, and fungal infections can cause death of the host. This review explains the PANoptosis-related routes, regulators and their potential effects on blinding eye diseases.
泛凋亡凋亡坏死性凋亡焦亡致盲性眼病
PANoptosisapoptosisnecroptosispyroptosisblinding eye diseases
Malireddi RKS, Kesavardhana S, Kanneganti TD. ZBP1 and TAK1: master regulators of NLRP3 inflammasome/pyroptosis, apoptosis, and necroptosis (PAN-optosis)[J]. Front Cell Infect Microbiol, 2019, 9: 406.
Guo H, Koehler HS, Dix RD, et al. Programmed cell death-dependent host defense in ocular herpes simplex virus infection[J]. Front Microbiol, 2022, 13: 869064.
Lin JF, Hu PS, Wang YY, et al. Phosphorylated NFS1 weakens oxaliplatin-based chemosensitivity of colorectal cancer by preventing PANoptosis[J]. Signal Transduct Target Ther, 2022, 7(1): 54.
Malireddi RKS, Kesavardhana S, Karki R, et al. RIPK1 distinctly regulates yersinia-induced inflammatory cell death, PANoptosis[J]. Immunohorizons, 2020, 4(12): 789-796.
Banoth B, Tuladhar S, Karki R, et al. ZBP1 promotes fungi-induced inflammasome activation and pyroptosis, apoptosis, and necroptosis (PANoptosis)[J]. J Biol Chem, 2020, 295(52): 18276-18283.
Yan WT, Yang YD, Hu XM, et al. Do pyroptosis, apoptosis, and necroptosis (PANoptosis) exist in cerebral ischemia? Evidence from cell and rodent studies[J]. Neural Regen Res, 2022, 17(8): 1761-1768.
Song M, Xia W, Tao Z, et al. Self-assembled polymeric nanocarrier-mediated co-delivery of metformin and doxorubicin for melanoma therapy[J]. Drug Deliv, 2021, 28(1): 594-606.
Karki R, Sharma BR, Lee E, et al. Interferon regulatory factor 1 regulates PANoptosis to prevent colorectal cancer[J]. JCI Insight, 2020, 5(12): 136720.
Yu X, He S. The interplay between human herpes simplex virus infection and the apoptosis and necroptosis cell death pathways[J]. virol J, 2016, 13: 77.
Ye D, Xu Y, Shi Y, et al. Anti-PANoptosis is involved in neuroprotective effects of melatonin in acute ocular hypertension model[J]. J Pineal Res, 2022: e12828.
Xu X, Lan X, Fu S, et al. Dickkopf-1 exerts protective effects by inhibiting PANoptosis and retinal neovascularization in diabetic retinopathy[J]. Biochem Biophys Res Commun, 2022, 617(Pt 2): 69-76.
Yan WT, Zhao WJ, Hu XM, et al. PANoptosis-like cell death in ischemia/reperfusion injury of retinal neurons[J]. Neural Regen Res, 2023, 18(2):357-363.
Christgen S, Zheng M, Kesavardhana S, et al. Identification of the PANoptosome: a molecular platform triggering pyroptosis, apoptosis, and necroptosis (PANoptosis)[J]. Front Cell Infect Microbiol, 2020, 10: 237.
Wang Y, Pandian N, Han JH, et al. Single cell analysis of PANoptosome cell death complexes through an expansion microscopy method[J]. Cell Mol Life Sci, 2022, 79(10): 531.
Kuriakose T, Man SM, Malireddi RK, et al. ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways[J]. Sci Immunol, 2016, 1(2): aag2045.
Zheng M, Karki R, Vogel P, et al. Caspase-6 is a key regulator of innate immunity, inflammasome activation, and host defense[J]. Cell, 2020, 181(3): 674-687.e13.
Malireddi RKS, Gurung P, Kesavardhana S, et al. Innate immune priming in the absence of TAK1 drives RIPK1 kinase activity-independent pyroptosis, apoptosis, necroptosis, and inflammatory disease[J]. J Exp Med, 2020, 217(3): e20191644.
Rathinam VA, Vanaja SK, Fitzgerald KA. Regulation of inflammasome signaling[J]. Nat Immunol, 2012, 13(4): 333-332.
Lee S, Karki R, Wang Y, et al. AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence[J]. Nature, 2021, 597(7876): 415-419.
Karki R, Sharma BR, Tuladhar S, et al. Synergism of TNF-α and IFN-γ Triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes[J]. Cell, 2021, 184(1): 149-168.e17.
Degterev A, Huang Z, Boyce M, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury[J]. Nat Chem Biol, 2005, 1: 112–119.
Geng F, Yin H, Li Z, et al. Quantitative analysis of necrostatin-1, a necroptosis inhibitor by LC-MS/MS and the study of its pharmacokinetics and bioavailability[J]. Biomed Pharmacother, 2017, 95: 1479-1485.
Yu L, Alva A, Su H, et al. Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8[J]. Science, 2004, 304(5657): 1500-1502.
Sakthivel D, Bolívar BE, Bouchier-Hayes L. Cellular autophagy, an unbidden effect of caspase inhibition by zVAD-fmk[J]. FEBS J, 2022, 289(11): 3097-3100.
Herbert A, Alfken J, Kim YG, et al. A Z-DNA binding domain present in the human editing enzyme, double-stranded RNA adenosine deaminase[J]. Proc Natl Acad Sci U S A, 1997, 94(16): 8421-8426.
Karki R, Sundaram B, Sharma BR, et al. ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis[J]. Cell Rep, 2021, 37(3): 109858.
赵家良. 改变青光眼作为首位不可逆致盲性眼病的现状[J]. 眼科学报, 2021, 36(6): 389-392.
Zhao JL. Current status on the change of glaucoma as the first irreversible blinding disease[J]. Eye Sci, 2021, 36(6): 389-392.
Zhang T, Yin C, Fedorov A, et al. ADAR1 masks the cancer immunotherapeutic promise of ZBP1-driven necroptosis[J]. Nature, 2022, 606(7914): 594-602.
de Oliveira Pinto LM, Garcia S, Lecoeur H, et al. Increased sensitivity of T lymphocytes to tumor necrosis factor receptor 1 (TNFR1)- and TNFR2-mediated apoptosis in HIV infection: relation to expression of Bcl-2 and active caspase-8 and caspase-3[J]. Blood, 2002, 99(5): 1666-1675.
Cui Y, Wang X, Lin F, et al. MiR-29a-3p improves acute lung injury by reducing alveolar epithelial Cell PANoptosis[J]. Aging Dis, 2022, 13(3): 899-909.
Farooq AV, Shukla D. Herpes simplex epithelial and stromal keratitis: an epidemiologic update[J]. Surv Ophthalmol, 2012, 57(5): 448-462.
James C, Harfouche M, Welton NJ, et al. Herpes simplex virus: global infection prevalence and incidence estimates[J]. Bull World Health Organ, 2020, 98(5): 315-329.
Karki R, Lee S, Mall R, et al. ZBP1-dependent inflammatory cell death, PANoptosis, and cytokine storm disrupt IFN therapeutic efficacy during coronavirus infection[J]. Sci Immunol, 2022, 7(74): eabo6294.
Dvoriantchikova G, Degterev A, Ivanov D. Retinal ganglion cell (RGC) programmed necrosis contributes to ischemia-reperfusion-induced retinal damage[J]. Exp Eye Res, 2014, 123: 1-7.
Qin Q, Yu N, Gu Y, et al. Inhibiting multiple forms of cell death optimizes ganglion cells survival after retinal ischemia reperfusion injury[J]. Cell Death Dis, 2022, 13(5): 507.
顾佳怡, 朱曼辉, 桑爱民. 褪黑素在糖尿病视网膜病变中的作用及机制[J]. 眼科学报, 2020, 35(3): 192-197.
Gu JY, Zhu MH, Sang AM. Research progress on the role and mechanism of melatonin in diabetic retinopathy[J]. Eye Sci, 2020, 35(3): 192-197.
Chi W, Li F, Chen H, Wang Y, et al. Caspase-8 promotes NLRP1/NLRP3 inflammasome activation and IL-1β production in acute glaucoma[J]. Proc Natl Acad Sci U S A, 2014, 111(30): 11181-11186.
Chen H, Deng Y, Gan X, et al. NLRP12 collaborates with NLRP3 and NLRC4 to promote pyroptosis inducing ganglion cell death of acute glaucoma[J]. Mol Neurodegener, 2020, 15: 26.
Shi Q, Wang J, Cheng Y, et al. Palbinone alleviates diabetic retinopathy in STZ-induced rats by inhibiting NLRP3 inflammatory activityPalbinone[J]. J Biochem Mol Toxicol, 2020, 34(7): e22489.
Yu X, Ma X, Lin W, et al. Long noncoding RNA MIAT regulates primary human retinal pericyte pyroptosis by modulating miR-342–3p targeting of CASP1 in diabetic retinopathy[J]. Exp Eye Res, 2021, 202: 108300.
Gao S, Huang X, Zhang Y, et al. Investigation on the expression regulation of RIPK1/RIPK3 in the retinal ganglion cells (RGCs) cultured in high glucose[J]. Bioengineered, 12(1): 3947-3956.
Xu CH, Wang JN, Suo XG, et al. RIPK3 inhibitor-AZD5423 alleviates acute kidney injury by inhibiting necroptosis and inflammation[J]. Int Immunopharmacol, 2022, 112: 109262.
Del Re DP, Amgalan D, Linkermann A, et al. Fundamental mechanisms of regulated cell death and implications for heart disease[J]. Physiol Rev, 2019, 99(4): 1765-1817.
Shu J, Yang L, Wei W, et al. Identification of programmed cell death-related gene signature and associated regulatory axis in cerebral ischemia/reperfusion injury[J]. Front Genet, 2022, 13: 934154.
Osborne NN, Casson RJ, Wood JP, et al. Retinal ischemia: mechanisms of damage and potential therapeutic strategies[J]. Prog Retin Eye Res, 2004, 23(1): 91-147.
Wu MY, Yiang GT, Liao WT, et al. Current mechanistic concepts in ischemia and reperfusion injury[J]. Cell Physiol Biochem, 2018, 46(4): 1650-1667.
Wan P, Su W, Zhang Y, et al. LncRNA H19 initiates microglial pyroptosis and neuronal death in retinal ischemia/reperfusion injury[J]. Cell Death Differ, 2020, 27(1): 176-191.
Mitroshina EV, Loginova MM, Yarkov RS, et al. Inhibition of neuronal necroptosis mediated by RIPK1 provides neuroprotective effects on hypoxia and ischemia in vitro and in vivo[J]. Int J Mol Sci, 2022, 23(2): 735.
Dojo Soeandy C, Elia AJ, Cao Y, et al. Necroptotic-apoptotic regulation in an endothelin-1 model of cerebral ischemia[J]. Cell Mol Neurobiol, 2021, 41(8): 1727-1742.
彭亚力, 胡敏, 孔蕾, 等. 特异性阻断剂Nec-1对视网膜缺血再灌注损伤模型小鼠坏死性凋亡的影响及作用[J]. 眼科新进展, 2017, 37(10): 914-917;+921.
Peng Y, Hu M, Kong L, et al. Effects of Nec-1 on necroptosis and retinal ganglion cells in mouse model of retina ischemia reperfusion injury[J]. Recent Advances in Ophthalmology, 2017, 37(10): 914-917;+921.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构