中山大学附属第八医院急诊科,广东 深圳,518033
程兆瑞,第一作者,研究方向:肝癌的基础研究与临床转化,E-mail: czr168756179@163.com
纸质出版日期:2023-11-20,
收稿日期:2023-05-01,
扫 描 看 全 文
程兆瑞,王彤.人工智能技术在肝细胞癌诊断、复发及预后预测研究进展[J].中山大学学报(医学科学版),2023,44(06):903-909.
CHENG Zhao-rui,WANG Tong.Research Progress in Artificial Intelligence for Diagnosis, Prediction of Recurrence and Prognosis in Hepatocellular Carcinoma[J].Journal of Sun Yat-sen University(Medical Sciences),2023,44(06):903-909.
程兆瑞,王彤.人工智能技术在肝细胞癌诊断、复发及预后预测研究进展[J].中山大学学报(医学科学版),2023,44(06):903-909. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2023.0602.
CHENG Zhao-rui,WANG Tong.Research Progress in Artificial Intelligence for Diagnosis, Prediction of Recurrence and Prognosis in Hepatocellular Carcinoma[J].Journal of Sun Yat-sen University(Medical Sciences),2023,44(06):903-909. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2023.0602.
随着人工智能(AI)技术在医学领域的迅速发展,AI模型在肝细胞癌(HCC)诊断、预测预后和疗效方面展现了巨大的潜力。AI技术包括计算搜索算法、机器学习(ML)和深度学习(DL)模型。基于组织病理学、放射学图像及相关分子标志物,利用ML或DL算法提取关键信息,建立的诊断或预测模型有望作为决策辅助工具应用于临床。然而,AI模型的应用尚存在局限性,需要进一步的技术支持、大规模临床验证和监管批准。本文总结了人工智能技术在肝细胞癌诊断、复发及预后预测方面研究进展,特别关注放射组学、组织病理学及分子标志物相关数据。
With the rapid development of artificial intelligence (AI) technology in the field of medicine, AI models show great potential in the diagnosis, prognosis and efficacy prediction of hepatocellular carcinoma (HCC). AI techniques include computational search algorithms, machine learning (ML) and deep learning (DL) models. Based on histopathology, radiomics and related molecular markers, the ML or DL algorithm is used to extract key information and then establish the diagnosis or prediction model, which may serve as a tool to aid in clinical decision-making. Further technical support, large-scale clinical validation and regulatory approvals are still needed due to the limitations on the application of AI models. This review summarizes the advances of AI in HC diagnosis, prediction of recurrence and prognosis, and highlights the radiomics, histopathology and molecular marker data.
人工智能技术肝细胞癌影像组学组织病理学诊断预测
artificial intelligencetechnologyhepatocellular carcinomaradiomicshistopathologydiagnosisprediction
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
严成, 陈新国, 金海龙, 等. 基于术前血清学指标AFP和GGT的标准在预测肝细胞癌患者肝移植术后长期生存中的作用研究[J]. 器官移植, 2023, 14(2): 248-256.
Yan C, Chen XG, Jin HL, et al. Role of the criteria based on preoperative serological indexes of AFP and GGT inpredicting long-term survival of patients with hepatocellular carcinoma after liver transplantation[J]. Organ Transplant, 2023, 14(2): 248-256.
Finn RS, Qin S, Ikeda M, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma[J]. N Engl J Med, 2020, 382(20): 1894-1905.
El-Serag HB, Kanwal F. Epidemiology of hepatocellular carcinoma in the United States: where are we? Where do we go?[J]. Hepatology, 2014, 60(5): 1767-1775.
Singal AG, Mukherjee A, Elmunzer BJ, et al. Machine learning algorithms outperform conventional regression models in predicting development of hepatocellular carcinoma[J]. Am J Gastroenterol, 2013, 108(11): 1723-1730.
刘金明, 吴嘉艺, 刘安然, 等. 基于深度学习方法的肝癌伴胆道癌栓患者的术前诊断(英文)[J].中国科学技术大学学报, 2022, 52(12): 50-60; +72.
Liu JM, Wu JY, Liu AR, et al. Preoperative diagnosis of liver cancer patients with bile duct cancer thrombus based on deep learning method[J]. J Univ Sci Technol China, 2022, 52 (12): 50-60; +72.
Calderaro J, Seraphin TP, Luedde T, et al. Artificial intelligence for the prevention and clinical management of hepatocellular carcinoma[J]. J Hepatol, 2022, 76(6): 1348-1361.
Heimbach, JK, Kulik LM, Finn RS, et al. AASLD guidelines for the treatment of hepatocellular carcinoma[J]. Hepatology, 2018, 67(1): 358-380.
European Association For The Study Of The Liver. Corrigendum to 'EASL recommendations on treatment of hepatitis C: Final update of the series' [J Hepatol 73 (2020) 1170-1218][J]. J Hepatol, 2023, 78(2): 452.
Schmauch, B, Herent P, Jehanno P, et al. Diagnosis of focal liver lesions from ultrasound using deep learning[J]. Diagn Interv Imaging, 2019, 100(4): 227-233.
Yang Q, Wei J, Hao X, et al. Improving B-mode ultrasound diagnostic performance for focal liver lesions using deep learning: a multicentre study[J]. EBioMedicine, 2020, 56: 102777.
Guo LH, Wang D, Qian YY, et al. A two-stage multi-view learning framework based computer-aided diagnosis of liver tumors with contrast enhanced ultrasound images[J]. Clin Hemorheol Microcirc, 2018, 69(3): 343-354.
Mokrane FZ, Lu L, Vavasseur A, et al. Radiomics machine-learning signature for diagnosis of hepatocellular carcinoma in cirrhotic patients with indeterminate liver nodules[J]. Eur Radiol, 2020, 30(1): 558-570.
Shi W, Kuang S, Cao S, et al. Deep learning assisted differentiation of hepatocellular carcinoma from focal liver lesions: choice of four-phase and three-phase CT imaging protocol[J]. Abdom Radiol (NY), 2020, 45(9): 2688-2697.
Zhen SH, Cheng M, Tao YB, et al. Deep learning for accurate diagnosis of liver tumor based on magnetic resonance imaging and clinical data[J]. Front Oncol, 2020, 10: 680.
Liao H, Long Y, Han R, et al. Deep learning-based classification and mutation prediction from histopathological images of hepatocellular carcinoma[J]. Clin Transl Med, 2020, 10(2): e102.
Kiani A, Uyumazturk B, Rajpurkar P, et al. Impact of a deep learning assistant on the histopathologic classification of liver cancer[J]. NPJ Digit Med, 2020, 3: 23.
袁惊雷, 谢晓桐, 张佩娜, 等. 基于CT和MRI影像组学的机器学习模型预测肝癌早期复发的研究进展[J]. 磁共振成像, 2022, 13(12): 154-158.
Yuan JL, Xie XT, Zhang PN, Ma LH. Research progress in predicting early recurrence of liver cancer using machine learning models based on CT and MRI imaging omics [J]. Magnetic Resonance Imaging, 2022, 13 (12): 154-158.
刘一萍, 李新平, 陈磊, 等. 基于人工智能的肝细胞癌精准影像学诊断和复发预测[J]. 临床肝胆病杂志, 2022, 38(3): 521-527.
Liu YP, Li XP, Chen L, et al. Accurate imaging diagnosis and recurrence prediction of hepatocellular carcinoma based on artificial intelligence[J]. J Clin Hepatobil Dis, 2022, 38 (3): 521-527.
Zhang Y, Lv X, Qiu J, et al. Deep learning with 3d convolutional neural network for noninvasive prediction of microvascular invasion in hepatocellular carcinoma[J]. J Magn Reson Imaging, 2021, 54(1): 134-143.
Jiang YQ, Cao SE, Cao S, et al. Preoperative identification of microvascular invasion in hepatocellular carcinoma by XGBoost and deep learning[J]. J Cancer Res Clin Oncol, 2021, 147(3): 821-833.
Abajian A, Murali N, Savic LJ, et al. Predicting treatment response to intra-arterial therapies for hepatocellular carcinoma with the use of supervised machine learning-an artificial intelligence concept[J]. J Vasc Interv Radiol, 2018, 29(6): 850-857. e851.
Zhang L, Xia W, Yan ZP, et al. Deep learning predicts overall survival of patients with unresectable hepatocellular carcinoma treated by transarterial chemoembolization plus sorafenib[J]. Front Oncol, 2020, 10: 593292.
Peng J, Kang S, Ning Z, et al. Residual convolutional neural network for predicting response of transarterial chemoembolization in hepatocellular carcinoma from CT imaging[J]. Eur Radiol, 2020, 30(1): 413-424.
Oezdemir I, Wessner CE, Shaw C, et al. Tumor vascular networks depicted in contrast-enhanced ultrasound images as a predictor for transarterial chemoembolization treatment response[J]. Ultrasound Med Biol, 2020, 46(9): 2276-2286.
Nam JY, Lee JH, Bae J, et al. Novel model to predict HCC recurrence after liver transplantation obtained using deep learning: a multicenter study[J]. Cancers (Basel), 2020, 12(10): 2791.
Saillard C, Schmauch B, Laifa O, et al. Predicting survival after hepatocellular carcinoma resection using deep learning on histological slides[J]. Hepatology, 2020, 72(6): 2000-2013.
Lu L, JrDaigle BJ. Prognostic analysis of histopathological images using pre-trained convolutional neural networks: application to hepatocellular carcinoma[J]. Peer J, 2020, 8: e8668.
Yamashita R, Long J, Saleem A, et al. Deep learning predicts postsurgical recurrence of hepatocellular carcinoma from digital histopathologic images[J]. Sci Rep, 2021, 11(1): 2047.
Johannet P, Coudray N, Donnelly DM, et al. Using machine learning algorithms to predict immunotherapy response in patients with advanced melanoma[J]. Clin Cancer Res, 2021, 27(1): 131-140.
Chaudhary K, Poirion OB, Lu L, et al. Deep learning-based multi-omics integration robustly predicts survival in liver cancer[J]. Clin Cancer Res, 2018, 24(6): 1248-1259.
Chaudhary K, Poirion OB, Lu L, et al. Multimodal meta-analysis of 1,494 hepatocellular carcinoma samples reveals significant impact of consensus driver genes on phenotypes[J]. Clin Cancer Res, 2019, 25(2): 463-472.
Llovet JM, Kelley RK, Villanueva A, et al. Hepatocellular carcinoma[J]. Nat Rev Dis Primers, 2021, 7(1): 6.
李克跃, 魏国微, 黎涛, 等. 肝癌肝移植手术前后靶向及免疫治疗的指征及时机探讨[J]. 器官移植, 2022, 13(5): 561-568.
Li KY, Wei GW, Li T, et al. Discussion on the indications and timing of targeted therapy and immunotherapy beforeand after liver transplantation for hepatocellular carcinoma[J]. Organ Transplant, 2022, 13(5): 561-568.
熊柏柱, 侯昌龙, 吴昱霖, 等. TACE联合卡瑞利珠单抗及酪氨酸激酶抑制剂治疗晚期肝细胞癌的疗效分析[J]. 影像诊断与介入放射学, 2023, 32(4): 284-289.
Xiong BZ, Hou CL, Wu YL, et al. Efficacy of transarterial chemoembolization combined with camrelizumab plus tyrosinekinase inhibitors for intermediate-advanced hepatocellular carcinoma[J]. Diagn Imaging Intervent Radiol, 2023, 32(4): 284-289.
Mulé S, Thiefin G, Costentin C, et al. Advanced hepatocellular carcinoma: pretreatment contrast-enhanced ct texture parameters as predictive biomarkers of survival in patients treated with sorafenib[J]. Radiology, 2018, 288(2): 445-455.
Yuan G, Song Y, Li Q, et al. Development and validation of a contrast-enhanced CT-based radiomics nomogram for prediction of therapeutic efficacy of anti-PD-1 antibodies in advanced HCC patients[J]. Front Immunol, 2020, 11: 613946.
Kather JN, Pearson AT, Halama N, et al. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer[J]. Nat Med, 2019, 25(7): 1054-1056.
Kather JN, Heij LR, Grabsch HI, et al. Pan-cancer image-based detection of clinically actionable genetic alterations[J]. Nat Cancer, 2020, 1(8): 789-799.
Fu Y, Jung AW, Torne RV, et al. Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis[J]. Nat Cancer, 2020, 1(8): 800-810.
Haber PK, Castet F, Torres-Martin M, et al. Molecular markers of response to anti-PD1 therapy in advanced hepatocellular carcinoma[J]. Gastroenterology, 2023, 164(1): 72-88. e18.
0
浏览量
23
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构