中山大学中山眼科中心 // 眼病防治全国重点实验室 // 广东省眼科视觉科学重点实验室 // 广东省眼部疾病临床医学研究中心,广州,510060
郭丽旭,第一作者,研究方向:医学影像技术学,E-mail:694529162@qq.com
纸质出版日期:2023-11-20,
收稿日期:2023-08-08,
扫 描 看 全 文
郭丽旭,陈擎宇,袁钊辉等.眼眶异物DR角膜缝环定位法与CT三维重建定位法临床价值评估[J].中山大学学报(医学科学版),2023,44(06):1016-1021.
GUO Li-xu,CHEN Qing-yu,YUAN Zhao-hui,et al.Clinical Value Evaluation of DR Corneal Suture Ring Localization and CT 3D Reconstruction Localization of Orbital Foreign Body[J].Journal of Sun Yat-sen University(Medical Sciences),2023,44(06):1016-1021.
郭丽旭,陈擎宇,袁钊辉等.眼眶异物DR角膜缝环定位法与CT三维重建定位法临床价值评估[J].中山大学学报(医学科学版),2023,44(06):1016-1021. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2023.0616.
GUO Li-xu,CHEN Qing-yu,YUAN Zhao-hui,et al.Clinical Value Evaluation of DR Corneal Suture Ring Localization and CT 3D Reconstruction Localization of Orbital Foreign Body[J].Journal of Sun Yat-sen University(Medical Sciences),2023,44(06):1016-1021. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2023.0616.
目的
2
探讨眼眶异物数字化放射摄影(DR)角膜缝环定位法与CT三维重建定位法临床价值。
方法
2
回顾性分析我院2016年1月至2020年12月收治的疑为眼部异物的患者作为研究对象,拟研究数量51例。同时做眼眶异物DR角膜缝环定位法和CT三维重建定位法,统计两种方法异物检出率,分析眼部异物的定位情况。
结果
2
采用眼眶异物DR角膜缝环定位法能分辨眼眶内异物者38例,采用CT三维重建定位法能分辨眼眶内异物者46例,CT三维重建定位法准确率90.20%高于眼眶异物DR角膜缝环定位法准确率74.51%(
P
<
0.05)。眼眶异物DR角膜缝环定位法能分辨出球内异物23例,CT三维重建定位法能分辨球内异物25例,其中CT三维重建定位法能分辨的球内异物最大径为(2.65±0.14)mm,低于眼眶异物DR角膜缝环定位法能分辨的球内异物直径(2.94±0.36)mm(
P
<
0.05)。眼眶异物DR角膜缝环定位法显示异物点钟位、异物到水平面距离、异物到矢状面距离及异物到两侧角巩膜缘连线距离与CT三维重建定位法结果相比无差异(
P>
0.05)。采用CT三维重建定位法能比较清楚地分辨出眼内、外的40例高密度影;采用眼眶异物DR角膜缝环定位法有23例确定为眼球内高密度影,有15例高密度影无法确定是眼球内外(
P
<0.05)。
结论
2
对于眼眶内异物定位来说,CT三维重建定位法分辨率高,定位准确,能检测眼球内部细微金属颗粒,可做眼部异物定位的常规方法,同时对于少数在虹膜根部、睫状体部、悬韧带外侧部的小异物定位,需配合眼眶异物DR角膜缝环定位法来定位。
Objective
2
To investigate the clinical value of DR corneal suture ring localization and CT 3D reconstruction localization of orbital foreign bodies.
Methods
2
Retrospective analysis was performed on patients (51 cases) suspected of ocular foreign bodies admitted to our hospital from January 2016 to December 2020 At the same time, DR corneal suture ring localization and CT three-dimensional reconstruction localization of orbital foreign bodies were performed, and the detection rate of foreign bodies by the two methods was calculated to analyze the location of ocular foreign bodies.
Results
2
There were 38 cases of intraorbital foreign body identified by DR corneal suture ring localization method, and 46 cases of intraorbital foreign body identified by CT three-dimensional reconstruction localization method. The accuracy of CT three-dimensional reconstruction localization method was 90.20%, which was higher than that of DR corneal suture ring localization method 74.51% (
P
<
0.05). Intraocular foreign bodies in 23 cases could be distinguished by DR corneal suture ring localization, and 25 cases by CT 3D reconstruction localization. The maximum diameter of intraocular foreign bodies that could be distinguished by CT 3D reconstruction localization was (2.65±0.14) mm. The diameter of intraspherical foreign body was (2.94±0.36) mm (
P
<
0.05) lower than that which could be distinguished by DR corneal suture ring localization method. The results of DR corneal suture ring localization of orbital foreign body showed no difference compared with the results of CT 3D reconstruction localization (
P
>
0.05). Forty cases of high density images inside and outside the eye could be clearly distinguished by CT 3D reconstruction. By using DR corneal suture ring localization method, 23 cases were confirmed to be intraocular high-density shadows, and 15 cases could not be confirmed to be intraocular high-density shadows (
P
<
0.05).
Conclusions
2
For the location of intraorbital foreign bodies, CT three-dimensional reconstruction can be used as a conventional method for locating ocular foreign bodies with high resolution and accuracy, and can detect fine metal particles inside the eyeball. Meanwhile, for a few small foreign bodies in the iris root, ciliary body and lateral suspension ligament, it is necessary to locate orbital foreign bodies with DR corneal suture ring.
眼眶异物眼眶异物DR角膜缝环定位法CT三维重建定位法分辨率高密度影
orbital foreign bodyDR corneal suture ring localization of orbital foreign bodyCT 3D reconstruction positioning methodresolutionhigh density film
程钧, 董燕玲, 翟华蕾, 等. 板栗刺所致眼部损伤的临床观察[J]. 中华眼科杂志, 2020, 56(5): 370-375.
Cheng J, Dong YL, Zhai HL, et al. Clinical observation of eye injury caused by chestnut thorn[J]. Chin J Ophthalmol, 2020, 56 (5): 370-375.
Mancini N, Salvato D, Delmastro E, et al. A modified Frosch approach for posterior tibial plateau fractures: technical note and case series[J]. Injury, 2023, 34(1): 9-14.
周艳丹, 肖可人, 贺珊婷, 等. 眼球壁异物取出术后硅油进入眼眶1例[J]. 中华眼科杂志, 2023, 59(1): 50-51.
Zhou YD, Xiao KR, He ST, et al. Silicone oil entered the orbit after removal of foreign body in the eyeball wall[J]. Chin J Ophthalmol, 2023, 59 (1): 50-51.
Hajnal B, Eltes PE, Bereczki F, et al. New method to apply the lumbar lordosis of standing radiographs to supine CT-based virtual 3D lumbar spine models[J]. Sci Rep, 2022, 12(1): 20382.
列韵瑶, 刘荣娇, 郑玲玲. 影响角膜异物剔除术预后的因素分析[J]. 眼科学报, 2022, 37(4): 348-352.
Lie YY, Liu RJ, Zheng LL. Analysis of factors affecting the prognosis of corneal foreign body removal[J]. Ophthalmology, 2022, 37(4): 348-352.
张中. MSCT三维重建对眼部异物的定位价值[J]. 中国CT和MRI杂志, 2016, 14(9): 19-21.
Zhang Z. Location value of MSCT 3 D reconstruction for ocular foreign bodies[J]. China CT and MRI Magazine, 2016,14 (9): 19-21.
周静, 张富文, 李蓓. 不同植入物在眼眶骨折修复中的应用[J]. 眼科学报, 2022, 37(11): 902-908.
Zhou J, Zhang FW, Li B. Application of different implants in orbital fracture repair[J]. Ophthalmology, 2022, 37 (11): 902-908.
郑永征, 谢茂松, 刘光辉, 等. 多层螺旋CT三维重建在眼部异物定位中的应用[J]. 中国实用眼科杂志, 2015, 33(3): 266-270.
Zheng YZ, Xie MS, Liu GH, et al. Application of multilayer spiral CT 3 D reconstruction in ocular foreign body localization [J]. Chin J Pract Ophthalmol, 2015, 33 (3): 266-270.
Palmér E, Nordström F, Karlsson A, et al. Head and neck cancer patient positioning using synthetic CT data in MRI-only radiation therapy[J]. J Appl Clin Med Phys, 2022, 23(4): 13-152.
Belmonte C, Nichols JJ, Cox SM, et al. TFOS DEWS Ⅱ pain and sensation report[J]. Ocul Surf, 2017, 15(3): 404-437.
牛延涛, 宋尧尧, 张永县, 等. 铋屏蔽对头颈部多层螺旋CT中眼晶状体辐射剂量的降低作用[J]. 中华放射医学与防护杂志, 2015, 35(2): 149-152.
Niu YT, Song YY, Zhang YX, et al. Effect of bismuth shielding on reducing radiation dose of ocular lens in multilayer spiral CT of head and neck [J]. Chin J Radiol Med Protect, 2015, 35 (2): 149-152.
中华医学会眼科学分会眼整形眼眶病学组. 中国眼眶异物诊断和治疗专家共识(2021年)[J]. 中华眼科杂志, 2021, 57(10): 743-748.
Ophthalmology and orthopedics Surgery Group, Ophthalmology Branch of Chinese Medical Association. Expert consensus on the diagnosis and treatment of orbital foreign bodies in China (2021) [J]. Chin J Ophthalmol, 2021, 57 (10): 743-748.
Breitsprecher T, Dhanasingh A, Schulze M, et al. CT imaging-based approaches to cochlear duct length estimation-a human temporal bone study[J]. Eur Radiol, 2022, 32(2): 1014-1023.
Bayat A, Pace DF, Sekuboyina A, et al. Anatomy-aware inference of the 3D standing spine posture from 2D radiographs[J]. Tomography, 2022, 8(1): 479-496.
陶建华, 邹萌, 陈青华, 等. 眼眶非金属异物的CT和MRI影像表现[J]. 放射学实践, 2022, 37(7): 829-833.
Tao JH, Zou M, Chen QH, et al. The CT and MRI imaging findings of the orbital non-metallic foreign bodies[J]. Radiol Pract, 2022, 37 (7): 829-833.
宋宏鲁, 魏世辉. 重视对髓鞘少突胶质细胞糖蛋白抗体阳性视神经炎的再认识[J]. 眼科学报, 2023, 38(3): 175-180.
Song HL, Wei SH. Emphasis on rerecognition of myelin oligodendrocyte glycoprotein antibody-positive optic neuritis[J]. Ophthalmology, 2023, 38 (3): 175-180.
路璐, 张驰, 张丹, 等. 眼前节异物的超声生物显微镜检查诊断[J]. 临床眼科杂志, 2021, 29(3): 240-243.
Lu L, Zhang C, Zhang D, et al. Diagnosis by ultrasound biomicroscopy of the anterior segment[J]. J Clin Ophthalmol, 2021, 29 (3): 240-243.
Higuchi S, Ogawa M, Masuda Y, et al. 3D-CT stress test for the assessment of CFL insufficiency[J]. J Orthop Sci, 2021, 26(6): 1074-1080.
刘广川, 靳娜, 刘卫艳. 眼眶内植物性异物14例患者的临床研究[J]. 国际眼科杂志, 2020, 20(3): 559-562.
Liu GC, Jin N, Liu WY. Clinical study of 14 patients with vegetative foreign bodies in the orbit[J]. Intern J Ophthalmol, 2020, 20 (3): 559-562.
刘娜, 刘宁姝, 吴昊芊, 等. 眼眶植物性异物伤影像学特点及分析[J]. 中国实用眼科杂志, 2017, 35(2): 193-196.
Liu N, Liu NS, Wu HQ, et al. Imaging characteristics and analysis of orbital vegetative foreign body injuries[J]. Chin J Pract Ophthalmol, 2017, 35 (2): 193-196.
Sisniega A, Stayman JW, Capostagno S, et al. Accelerated 3D image reconstruction with a morphological pyramid and noise-power convergence criterion[J]. Phys Med Biol, 2021, 66(5): 5-15.
Yang R, Lu H, Wang Y, et al. CT-MRI Image fusion-based computer-assisted navigation management of communicative tumors involved the infratemporal-middle cranial fossa[J]. J Neurol Surg B Skull Base, 2022, 82(3): 321-329.
Tat J, Crawford J, Chong J, et al. Three-Dimensional (3D) animation and calculation for the assessment of engaging hill-sachs lesions with computed tomography 3D Reconstruction[J]. Arthrosc Sports Med Rehabil, 2021, 3(1): 89-96.
Bitschi D, Fürmetz J, Gilbert F, et al. Preoperative mixed-reality visualization of complex tibial plateau fractures and its benefit compared to CT and 3D Printing[J]. J Clin Med, 2023, 12(5): 1785.
Hu Y, Peng A, Wang S, et al. Flexion tibial plateau fractures: 3-dimensional CT simulation-based subclassification by injury pattern[J]. Orthop Surg, 2022, 14(3): 543-554.
0
浏览量
19
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构