1.遵义医科大学珠海校区研究生院,广东 珠海519041
2.中山市人民医院呼吸与危重症医学科,广东 中山528499
杜伟伟,第一作者,研究方向:肺炎,E-mail:dw1260281058@163.com
纸质出版日期:2023-11-20,
收稿日期:2023-07-17,
扫 描 看 全 文
杜伟伟,季文涛,罗甜等.肺癌患者合并肺部真菌感染的风险预测模型[J].中山大学学报(医学科学版),2023,44(06):1022-1029.
DU Wei-wei,JI Wen-tao,LUO Tian,et al.Risk Prediction Model for Pulmonary Fungal Infections in Patients with Lung Cancer[J].Journal of Sun Yat-sen University(Medical Sciences),2023,44(06):1022-1029.
杜伟伟,季文涛,罗甜等.肺癌患者合并肺部真菌感染的风险预测模型[J].中山大学学报(医学科学版),2023,44(06):1022-1029. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2023.0617.
DU Wei-wei,JI Wen-tao,LUO Tian,et al.Risk Prediction Model for Pulmonary Fungal Infections in Patients with Lung Cancer[J].Journal of Sun Yat-sen University(Medical Sciences),2023,44(06):1022-1029. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2023.0617.
目的
2
探究肺癌患者合并肺部感染的风险因素,构建和验证一个风险预测模型,使用现有的临床数据来预测肺癌患者的肺部真菌感染风险。
方法
2
这是一项回顾性研究,收集了2021年1月至2023年3月在中山市人民医院接受治疗的390例肺癌患者的信息,利用合并和不合并肺部真菌感染的肺癌患者人口统计学和临床特征来构建预测发生肺部真菌感染的列线图。所有患者按7:3的比例随机分为训练集和内部验证集两组,应用LASSO回归方法筛选变量和选择预测因子,并使用训练集的多元logistic回归方法构建列线图模型。通过计算受试者工作特征曲线下面积(AUC)确定模型的判断能力,此外,还对模型进行了校正分析和决策曲线分析(DCA)评价预测效果。
结果
2
LASSO回归筛选出14个潜在的预测因素,进一步的Logistic回归分析结果显示肝损伤、手术、贫血、低蛋白血症、疾病历程、侵入性操作、住院时间大于2周、全身糖皮质激素应用大于2周是肺癌患者发生肺部真菌感染的独立预测因素。根据这些变量建立了一个预测模型,该模型对训练集的AUC95%CI
=
0.980(0.973,0.896)和内部验证的AUC95%CI
=
0.956 (0.795,1.000),显示具有很高的区分度。训练集和验证集的校准曲线均基本沿45°线分布,DCA 曲线显示在阈概率为大于0.03时存在净获益。
结论
2
肺癌患者合并肺部真菌感染风险预测模型的构建和验证有助于临床确定高危人群,及早进行干预或调整治疗决策。
Objective
2
To investigate the risk factors for pulmonary fungal infection in lung cancer patients, construct and validate a risk prediction model using available clinical data to predict the risk of pulmonary fungal infections in patients with lung cancer.
Methods
2
We conducted a retrospective study and collected information of 390 lung cancer patients treated at Zhongshan People's Hospital from January 2021 to March 2023. Demographic and clinical characteristics of the patients with and without pulmonary fungal infections were used to construct column line graphs to predict the occurrence of pulmonary fungal infections. All enrolled patients were randomly assigned to training set and internal validation set in the ratio of 7:3. For the modelling group, LASSO regression was applied to screen variables and select predictors, and multivariate logistic regression with a training set was used to construct the Noe column line graph model. The judgment ability of the model was determined by calculating the area under the curve (AUC), and in addition, calibration analysis and decision curve analysis (DCA) were performed on the model.
Results
2
LASSO regression identified 14 potential predictive factors, and further logistic regression analysis showed that hepatic injury, surgery, anemia, hypoalbuminemia, illness course, invasive operation, hospital stay at least 2 weeks and glucocorticoid used for at least 2 weeks were independent predictors for the occurrence of pulmonary fungal infection in lung cancer patients. A predictive model was established based on these variables, with an AUC95%CI of 0.980 (0.973, 0.896) for the training set and an AUC95%CI of 0.956 (0.795, 1.000) for internal validation, indicating high discriminative ability. The calibration curves for both the training set and validation set were distributed along the 45°line, and the decision curve analysis (DCA) showed net benefit for threshold probabilities greater than 0.03.
Conclusions
2
The construction and validation of a predictive model for the risk of lung fungal infections in lung cancer patients will help clinical practitioners to identify high-risk groups and give timely intervention or adjust treatment decisions.
肺癌肺部真菌感染危险因素列线图模型
lung cancerfungal infection of the lungrisk factorsnomogrammodel
Howlader N, Forjaz G, Mooradian MJ, et al. The effect of advances in lung-cancer treatment on population mortality[J]. N Engl J Med, 2020, 383(7): 640-649.
Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1): 7-33.
Oliver AL. Lung cancer: epidemiology and screening[J]. Surg Clin North Am, 2022, 102(3): 335-344.
陈睿琳, 王静茹, 王硕, 等. 大规模人群队列生活行为方式相关的肺癌风险预测模型的构建[J]. 四川大学学报(医学版), 2023, 54(5): 892-898.
Chen RL, Wang JR, Wang S, et al. Construction of a risk prediction model for lung cancer based on lifestyle behaviors inthe UK biobank large-scale population cohort[J]. J Sichuan Univ (Med Sci), 2023, 54(5): 892-898.
Chen J, Pan QS, Hong WD, et al. Use of an artificial neural network to predict risk factors of nosocomial infection in lung cancer patients[J]. Asian Pac J Cancer Prev, 2014, 15(13): 5349-5353.
Lamoth F, Calandra T. Pulmonary aspergillosis: diagnosis and treatment[J]. Eur Respir Rev, 2022, 31(166).
Liu MA, Bakow BR, Hsu TC, et al. Temporal trends in sepsis incidence and mortality in patients with cancer in the US population[J]. Am J Crit Care, 2021, 30(4): e71-e79.
Chen CA, Ho CH, Wu YC, et al. Epidemiology of aspergillosis in cancer patients in taiwan[J]. Infect Drug Resist, 2022, 15: 3757-3766.
Russo A, Falcone M, Vena A, et al. Invasive pulmonary aspergillosis in non-neutropenic patients: analysis of a 14-month prospective clinical experience[J]. J Chemother, 2011, 23(5): 290-294.
Woodard GA, Jones KD, Jablons DM. Lung cancer staging and prognosis[J]. Cancer Treat Res, 2016, 170: 47-75.
中华医学会呼吸病学分会感染学组, 中华结核和呼吸杂志编辑委员会. 肺真菌病诊断和治疗专家共识[J]. 中华结核和呼吸杂志, 2007, (11): 821-834.
Chinese medical society of respiratory society, Chinese editorial board of tuberculosis and respiratory journal. Pulmonary mycosis diagnosis and treatment expert consensus[J]. Chin J Tubere Respir Dis, 2007,30 (11): 821–834.
中华医学会呼吸病学分会感染学组. 中国成人医院获得性肺炎与呼吸机相关性肺炎诊断和治疗指南(2018年版)[J]. 中华结核和呼吸杂志, 2018, (4): 255-280.
Chinese medical society of respiratory society.Chinese guidelines for the diagnosis and treatment of hospital-acquired pneumonia and ventilator-associated pneumonia in adults (2018)[J].Chin J Tubere Respir Dis, 2018, (4): 255-280.
Batura-Gabryel H, Firlik M, Wieczorek U. Evaluation of occurrence of fungal infection in patients with lung cancer[J]. Med Dosw Mikrobiol, 1994, 46(1-2): 79-81.
Y C, Jm N, Sh S, et al. The incidence and risk factors of chronic pulmonary infection after radiotherapy in patients with lung cancer[J]. Cancer Res Treat, 2023,55(3):804-813.
Jiang Y, Li JY, Li M, et al. Clinical analysis of nosocomial pulmonary fungal infection in patients with cancer[J]. Chin J Cancer, 2004, 23(12): 1707-1709.
Yan X, Li M, Jiang M, et al. Clinical characteristics of 45 patients with invasive pulmonary aspergillosis: retrospective analysis of 1711 lung cancer cases[J]. Cancer, 2009,115(21): 5018-5025.
Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement[J]. Bmj, 2015, 350: g7594.
Akinosoglou KS, Karkoulias K, Marangos M. Infectious complications in patients with lung cancer[J]. Eur Rev Med Pharmacol Sci, 2013, 17(1): 8-18.
Hosseini K, Ahangari H, Chapeland-Leclerc F, et al. Role of fungal infections in carcinogenesis and cancer development: a literature review[J]. Adv Pharm Bull, 2022, 12(4): 747-756.
Budisan L, Zanoaga O, Braicu C, et al. Links between Infections, lung cancer, and the immune system[J]. Int J Mol Sci, 2021, 22(17):9394.
Wu Y, Yao Z, Zhang J, et al. Real-world landscape transition of death causes in the immunotherapy era for metastatic non-small cell lung cancer[J]. Front Immunol, 2022, 13: 1058819.
Lowes D, Al-Shair K, Newton PJ, et al. Predictors of mortality in chronic pulmonary aspergillosis[J]. Eur Respir J, 2017, 49(2):1601062.
Balachandran VP, Gonen M, Smith JJ, et al. Nomograms in oncology: more than meets the eye[J]. Lancet Oncol, 2015, 16(4): e173-180.
Tibshirani R. The lasso method for variable selection in the Cox model[J]. Stat Med, 1997, 16(4): 385-395.
Xi LJ, Guo ZY, Yang XK, et al. Application of LASSO and its extended method in variable selection of regression analysis[J]. Chin J Prev Med, 2023, 57(1): 107-111.
李泽云, 刘城鑫, 郭泽怀, 等. 肺癌患者并发肺部真菌感染危险因素的Meta分析[J]. 中华医院感染学杂志, 2023, (17): 2575-2580.
Li ZY, Liu CX, Guo ZH, et al. Risk factors for pulmonary fungal infection in lung cancer patients:a meta-analysis[J]. Chin J Nosocomi,2023, (17): 2575-2580.
Shin SH, Kim BG, Kang J, et al. Incidence and risk factors of chronic pulmonary aspergillosis development during long-term follow-up after lung cancer surgery[J]. J Fungi (Basel), 2020, 6(4):271.
曾祥华. 贫血等合并症对恶性实体瘤晚期患者抗PD1/PD-L1抗体免疫治疗效果的影响及机制研究[D]. 中国人民解放军陆军军医大学, 2021.
Zeng XH. Influence of comorbidities including anemia on the efficacy of anti-PD1/PD-L1 immunotherapy in patients with advanced solid tumor[D]. Army Med Univ, 2021.
Berenguer J, Allende MC, Lee JW, et al. Pathogenesis of pulmonary aspergillosis. granulocytopenia versus cyclosporine and methylprednisolone-induced immunosuppression[J]. Am J Respir Crit Care Med, 1995, 152(3): 1079-1086.
Gu Y, Ye X, Liu Y, et al. A risk-predictive model for invasive pulmonary aspergillosis in patients with acute exacerbation of chronic obstructive pulmonary disease[J]. Respir Res, 2021, 22(1): 176.
Bao Q, Zhou H, Chen X, et al. Characteristics and influencing factors of pathogenic bacteria in lung cancer chemotherapy combined with nosocomial pulmonary infection[J]. CJLC, 2019, 22(12): 772-778.
刘晓丽, 李莉, 袁双虎, 等. 放疗联合免疫检查点抑制剂治疗非小细胞肺癌研究进展[J]. 肿瘤综合治疗电子杂志, 2019, 5(4): 1-5;+8.
Liu XL, Li L, Yuan SH, et al. Advances in radiotherapy combined with immunologic checkpoint inhibitors in the treatment of non-small cell lung cancer[J]. J Multidiscipli Cancer Manage (Electronic Version),2019, 5(4): 1-5;+8.
Yan H, Guo L, Pang Y, et al. Clinical characteristics and predictive model of pulmonary tuberculosis patients with pulmonary fungal coinfection[J]. BMC Pulm Med, 2023, 23(1): 56.
0
浏览量
13
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构