1.青岛大学附属烟台毓璜顶医院检验中心,山东 烟台 264000
2.青岛大学附属烟台毓璜顶医院产科,山东 烟台 264000
马莉,研究方向:分子生物学诊断,E-mail: yhdmali@163.com
纸质出版日期:2023-07-20,
收稿日期:2022-12-21,
扫 描 看 全 文
马莉,李蕾,吴红等.18q缺失综合征产前诊断方法[J].中山大学学报(医学科学版),2023,44(04):677-683.
MA Li,LI Lei,WU Hong,et al.Prenatal Diagnosis of 18q Deletion Syndrome[J].Journal of Sun Yat-sen University(Medical Sciences),2023,44(04):677-683.
马莉,李蕾,吴红等.18q缺失综合征产前诊断方法[J].中山大学学报(医学科学版),2023,44(04):677-683. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20230421.001.
MA Li,LI Lei,WU Hong,et al.Prenatal Diagnosis of 18q Deletion Syndrome[J].Journal of Sun Yat-sen University(Medical Sciences),2023,44(04):677-683. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20230421.001.
目的
2
探讨18q缺失综合征的产前诊断方法,提高对无创产前筛查(NIPT)技术在18q缺失综合征产前诊断中应用价值的认识。
方法
2
本研究通过对孕妇进行血清学筛查、超声影像学检查、羊水核型分析及亲本外周血染色体核型分析等传统检查手段以及NIPT检查、染色体微阵列芯片检测(CMA)、流产组织基因组拷贝数变异测序(CNV-Seq)检测等分子生物学技术来诊断18q缺失综合征,并根据检查结果进行遗传咨询。
结果
2
该病例NIPT结果提示18号染色体24 Mb片段缺失,经过羊水核型分析及CMA检测证实,该片段包含BCL2在内的17个基因的缺失变异,均与18q缺失综合征相关。结合超声影像学检查,确诊为18q缺失综合征。结合亲本外周血染色体核型分析结果,该变异为新发突变。
结论
2
介入性产前诊断技术是诊断18q缺失综合征的重要标准。NIPT技术作为中孕期的一项重要筛查,可以在超声影像学未见异常的情况下,早期提示染色体片段缺失的可能性,降低时间及经济成本。
Objective
2
To explore the prenatal diagnostic methods of 18q deletion syndrome and improve understanding on the value of non-invasive prenatal testing (NIPT) in prenatal diagnosis of 18q deletion syndrome.
Methods
2
18q deletion syndrome was detected by conventional methods such as serological screening, ultrasonic imaging examination, chromosome karyotype analyses of both amniotic fluid cells and parental peripheral blood, and molecular biological techniques including NIPT, chromosomal microarray analysis (CMA) and copy number variation sequencing (CNV-Seq). Genetic counseling was conducted based on these examination results.
Results
2
NIPT identified a 24 MB deletion on the chromosome 18 which contained 17 genes including BCL2 by karyotype analysis of amniotic fluid cells and CMA. Further ultrasonic imaging examination confirmed the diagnosis of 18q deletion syndrome and karyotype analysis of parental peripheral blood revealed a de novo deletion mutation.
Conclusions
2
Interventional prenatal diagnosis is an integral standard for the diagnosis of 18q deletion syndrome. NIPT, as an important screening test in middle pregnancy, can indicate the early possible chromosome segment deletion and reduce the time and economic cost when no abnormality is found in ultrasonic imaging.
18q缺失综合征无创产前筛查遗传咨询
18q deletion syndromenon-invasive prenatal testing (NIPT)genetic counseling
De Grouchy J, Royer P, Salmon C, et al. D'el'etion partielle des bras longs du chromosome 18[J]. Pathol Biol, 1964, 12: 579-582.
Soileau B, Hasi M, Sebold C, et al. Adults with Chromosome 18 Abnormalities[J]. J Genet Couns, 2015, 24(4): 663-674.
Jin Q, Qiang R, Cai B, et al. The genotype and phenotype of chromosome 18p deletion syndrome: case series[J]. Medicine (Baltimore), 2021, 100(18): e25777.
Miao ZY, Chen SF, Wu H, et al. Analysis of genetic characteristics of 436 children with dysplasia and detailed analysis of rare karyotype[J]. Open Life Sci, 2022, 17(1): 416-425.
Hogendorf A, Zieliński M, Constantinou M, et al. Immune dysregulation in patients with chromosome 18q deletions-searching for putative loci for autoimmunity and immunodeficiency[J]. Front Immunol, 2021, 12: 742834.
Lindquist A, Hui L, Poulton A, et al. State-wide utilization and performance of traditional and cell-free DNA-based prenatal testing pathways: the Victorian Perinatal Record Linkage (PeRL) study[J]. Ultrasound Obstet Gynecol, 2020, 56(2): 215-224.
Butler MG, Miller BS, Romano A, et al. Genetic conditions of short stature: A review of three classic examples[J]. Front Endocrinol (Lausanne), 2022, 13: 1011960.
Yu SC, Chan KC, Zheng YW, et al. Size-based molecular diagnostics using plasma DNA for noninvasive prenatal testing[J]. Proc Natl Acad Sci U S A, 2014, 111(23): 8583-8588.
Feenstra I, Vissers LE, Orsel M, et al. Genotype-phenotype mapping of chromosome 18q deletions by high-resolution array CGH: an update of the phenotypic map[J]. Am J Med Genet A, 2007, 143a: 1858-1867.
Dostal A, Nemeckova J, Gaillyova R, et al. Identification of 2.3-Mb gene locus for congenital aural atresia in 18q22.3 deletion: a case report analyzed by comparative genomic hybridization[J]. Otol Neurotol, 2006, 27: 427-432.
Feenstra I, Vissers LE, Pennings RJ, et al. Disruption of teashirt zinc finger homeobox 1 is associated with congenital aural atresia in humans[J]. Am J Hum Genet, 2011, 89: 813-819.
Cody JD, Sebold C, Malik A, et al. Recurrent interstitial deletions of proximal 18q: a new syndrome involving expressive speech delay[J]. Am J Med Genet A, 2007, 143a: 1181-1190.
Yehya A, Souki R, Bitar F, et al. Differential duplication of an intronic region in the NFATC1 gene in patients with congenital heart disease[J]. Genome, 2006, 49: 1092-1098.
Abdul-Sater Z, Yehya A, Beresian J, et al. Two heterozygous mutations in NFATC1 in a patient with Tricuspid Atresia[J]. PLoS One, 2012, 7: e49532.
Jabara HH, Ohsumi T, Chou J, et al. A homozygous mucosa-associated lymphoid tissue 1 (MALT1) mutation in a family with combined immunodeficiency[J]. J Allergy Clin Immunol, 2013, 132: 151-158.
McKinnon ML, Rozmus J, Fung SY, et al. Combined immunodeficiency associated with homozygous MALT1 mutations[J]. J Allergy Clin Immunol, 2014, 133: 1458-62, 62.e1-7.
Neve EP, Svensson K, Fuxe J, et al. VIPL, a VIP36-like membrane protein with a putative function in the export of glycoproteins from the endoplasmic reticulum[J]. Exp Cell Res, 2003, 288: 70-83.
Alders M, Hogan BM, Gjini E, et al. Mutations in CCBE1 cause generalized lymph vessel dysplasia in humans[J]. Nat Genet, 2009, 41: 1272-1274.
Burrell RA, McClelland SE, Endesfelder D, et al. Replication stress links structural and numerical cancer chromosomal instability[J]. Nature, 2013, 494: 492-496.
Maydan G, Noyman I, Har-Zahav A, et al. Multiple congenital anomalies-hypotonia-seizures syndrome is caused by a mutation in PIGN. J Med Genet, 2011, 48: 383-389.
Fleming L, Lemmon M, Beck N, et al. Genotype-phenotype correlation of congenital anomalies in multiple congenital anomalies hypotonia seizures syndrome (MCAHS1) / PIGN-related epilepsy[J]. Am J Med Genet A, 2016, 170a: 77-86.
Kheradmand Kia S, Verbeek E, Engelen E, et al. RTTN mutations link primary cilia function to organization of the human cerebral cortex. Am J Hum Genet, 2012, 91: 533-540.
McKenna JA, Sacco J, Son TT, et al. Congenital methemoglobinemia in a dog with a promoter deletion and a nonsynonymous coding variant in the gene encoding cytochrome b₅[J]. J Vet Intern Med, 2014, 28: 1626-1631.
Kok RC, Timmerman MA, Wolffenbuttel KP, et al. Isolated 17,20-lyase deficiency due to the cytochrome b5 mutation W27X. J Clin Endocrinol Metab.2010; 95: 994-999.
Varon R, Gooding R, Steglich C, et al. Partial deficiency of the C-terminal-domain phosphatase of RNA polymerase Ⅱ is associated with congenital cataracts facial dysmorphism neuropathy syndrome[J]. Nat Genet, 2003, 35: 185-189.
Kwan AHW, Zhu X, Mar Gil M, et al. Genome-wide cell-free DNA test for fetal chromosomal abnormalities and variants: unrestricted versus restricted reporting[J]. Diagnostics (Basel), 2022, 12(10): 2439.
Wang J, Xiao L, Wang J, et al. Mosaic ring chromosome 18 in a Chinese child with epilepsy: a case report and review of the literature[J]. Neurol Sci, 2021, 42(12): 5231-5239.
Liu S, Chen M, Yang H, et al. Clinical characteristics and long-term recombinant human growth hormone treatment of 18q-syndrome: a case report and literature review[J]. Front Endocrinol (Lausanne), 2021, 12: 776835.
Strathdee G, Sutherland R, Jonsson JJ, et al. Molecular characterization of patients with 18q23 deletions[J]. Am J HumGenet, 1997, 60: 860-868.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构