1.中山大学中山医学院生理教研室,广东 广州 510080
2.中山大学中山医学院病理生理教研室,广东 广州 510080
李蒙,研究方向:肾脏损伤和分子机制,E-mail; 1226556542@qq.com
纸质出版日期:2023-07-20,
收稿日期:2023-04-18,
扫 描 看 全 文
李蒙,隆罗莎,梁柏恩等.激活TGR5缓解肾缺血再灌注后肾脏纤维化损伤[J].中山大学学报(医学科学版),2023,44(04):617-624.
LI Meng,LONG Luo-sha,LIANG Bai-en,et al.Activation of TGR5 Attenuates Renal Fibrosis after Renal Ischemia Reperfusion Injury[J].Journal of Sun Yat-sen University(Medical Sciences),2023,44(04):617-624.
李蒙,隆罗莎,梁柏恩等.激活TGR5缓解肾缺血再灌注后肾脏纤维化损伤[J].中山大学学报(医学科学版),2023,44(04):617-624. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20230508.001.
LI Meng,LONG Luo-sha,LIANG Bai-en,et al.Activation of TGR5 Attenuates Renal Fibrosis after Renal Ischemia Reperfusion Injury[J].Journal of Sun Yat-sen University(Medical Sciences),2023,44(04):617-624. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20230508.001.
目的
2
探讨激活胆汁酸受体TGR5在单肾缺血再灌注损伤合并对侧肾摘除(uIRIx)模型诱导的肾脏纤维化中的作用。
方法
2
体内实验:将C57BL/6J小鼠随机分成假手术(Sham)组、uIRIx组及uIRIx+石胆酸(LCA)组,每组6只,使用uIRIx模型诱导肾脏纤维化,通过血和尿生化指标评估肾脏功能,利用HE染色评估肾脏损伤程度,使用Masson染色及免疫组化对肾脏纤维化程度进行评估,并用Western Blotting检测肾脏皮质纤维化相关指标蛋白表达;分别在
TGR5
+/+
小鼠及
TGR5
-/-
小鼠中设置Sham组及uIRIx组,每组6只,利用Western Blotting检测各组肾脏纤维化程度。体外实验:在人源肾上皮细胞系HK2细胞中给予TGF-β1诱导促纤维化反应,给予LCA进行药物干预,利用鬼笔环肽染色标记细胞骨架,使用Western Blotting检测HK2细胞内纤维化相关指标蛋白表达。
结果
2
体内实验:与Sham组相比,uIRIx组小鼠血浆肌酐水平(
P
=0.007)及尿白蛋白/肌酐比(
P
=0.041)明显增加,肾脏皮质蛋白TGR5表达(
P
=0.002)下降,Fibronectin表达(
P
=0.020)及COL1A1表达(
P<
0.001)上升,同时伴有肾脏结构受损及胶原沉积加重,LCA干预有效改善肾脏功能,缓解肾脏损伤及纤维化程度;
TGR5
+/+
小鼠与
TGR5
-/-
小鼠相比,uIRIx诱导引起的Fibronectin表达(
P<
0.001)及COL1A1表达(
P
=0.001)增加。体外实验:TGF-β1诱导HK2细胞形态改变,细胞骨架解聚重组,促纤维化指标蛋白上调;LCA可有效抑制TGF-β1诱导的细胞形态改变及骨架解聚重组,呈浓度依赖性下调纤维化相关指标蛋白表达。
结论
2
LCA缓解uIRIx模型诱导的肾脏纤维化,TGR5基因敲除加重uIRIx诱导的肾脏纤维化;在HK2细胞中,LCA缓解TGF-β1诱导的细胞促纤维化反应。研究结果提示激活TGR5缓解缺血再灌注后肾脏纤维化损伤进程。
Objective
2
To investigate the role of bile acid receptor TGR5 activation in renal fibrosis induced by unilateral ischemia reperfusion injury and contralateral nephrectomy (uIRIx) model.
Methods
2
In vivo: C57BL/6J mice were randomly divided into Sham group, uIRIx group and uIRIx+ lithcholic acid (LCA) group with 6 mice in each group. Kidney fibrosis was induced by uIRIx model, kidney function was evaluated by blood and urine biochemical indexes, and the degree of kidney injury was evaluated by HE staining. Masson staining and immunohistochemistry were used to evaluate the degree of renal fibrosis, and Western Blotting was used to detect the expression of related index proteins of renal cortical fibrosis. Sham group and uIRIx group were set in
TGR5
+/+
mice and
TGR5
-/-
mice respectively, with 6 mice in each group. The degree of renal fibrosis in each group was detected by Western Blotting. In vitro: TGF-β1 was administered to induce pro-fibrosis response in human renal tubular epithelial cell line (HK2 cells), LCA was used for drug intervention, cytoskeleton was labeled with phalloidin-FITC staining and the expression of fibrosis related indicator protein in HK2 cells was detected by Western Blotting.
Results
2
In vivo: Compared with the Sham group, plasma creatinine level (
P
=0.007) and urinary albumin/creatinine ratio (
P
=0.041) in uIRIx group were significantly increased, renal cortical protein TGR5 expression (
P
=0.002) was decreased, Fibronectin expression (
P
=0.020) and COL1A1 expression (
P
<
0.001) were increased. At the same time, the kidney structure was damaged and collagen deposition was aggravated. LCA intervention effectively improved the kidney function and alleviated the degree of kidney injury and fibrosis.
TGR5
gene knockout increased uIRIx-induced Fibronectin expression (
P
<
0.001) and COL1A1 expression (
P
=0.001) compared with
TGR5
+/+
mice. In vitro: TGF-β1 induced morphological changes of HK2 cells, cytoskeletal depolymerization and recombination, and promoted the up-regulation of fibrosis index protein. LCA effectively inhibited the morphological changes and skeletal depolymerization induced by TGF-β1, and down-regulated the expression of fibrosis related indicator proteins.
Conclusions
2
LCA alleviated renal fibrosis induced by uIRIx model, and knockout of TGR5 gene aggravated uIRIx induced renal fibrosis; In HK2 cells, LCA alleviated fibrogenic reaction induced by TGF-β1. This indicates that activation of TGR5 alleviates renal fibrosis induced by uIRIx.
Takeda G蛋白耦联受体5单肾缺血再灌注损伤合并对侧肾摘除肾脏纤维化石胆酸
TGR5uIRIxrenal fibrosislithcholic acid
Petrazzuolo A, Sabiu G, Assi E, et al. Broadening horizons in mechanisms, management, and treatment of diabetic kidney disease[J]. Pharmacol Res, 2023, 190: 106710.
Yang C, Wang H, Zhao X, et al. CKD in China: evolving spectrum and public health implications[J]. Am J Kidney Dis, 2020, 76(2): 258-264.
Sun HJ. Current opinion for hypertension in renal fibrosis[J]. Adv Exp Med Biol, 2019, 1165: 37-47.
Shiva N, Sharma N, Kulkarni YA, et al. Renal ischemia/reperfusion injury: an insight on in vitro and in vivo models[J]. Life Sci, 2020, 256: 117860.
Huang R, Fu P, Ma L. Kidney fibrosis: from mechanisms to therapeutic medicines[J]. Signal Transduct Target Ther, 2023, 8(1): 129.
Ruiz-Ortega M, Rayego-Mateos S, Lamas S, et al. Targeting the progression of chronic kidney disease[J]. Nat Rev Nephrol, 2020, 16(5): 269-288.
Wu W, Wang X, Yu X, et al. Smad3 signatures in renal inflammation and fibrosis[J]. Int J Biol Sci, 2022, 18(7): 2795-2806.
Shapiro H, Kolodziejczyk AA, Halstuch D, et al. Bile acids in glucose metabolism in health and disease[J]. J Exp Med, 2018, 215(2): 383-396.
Arab JP, Karpen SJ, Dawson PA, et al. Bile acids and nonalcoholic fatty liver disease: molecular insights and therapeutic perspectives[J]. Hepatology (Baltimore, Md), 2017, 65(1): 350-362.
Sorrentino G, Perino A, Yildiz E, et al. Bile acids signal via TGR5 to activate intestinal stem cells and epithelial regeneration[J]. Gastroenterology, 2020, 159(3): 956-968.e958.
Xiao H, Sun X, Liu R, et al. Gentiopicroside activates the bile acid receptor Gpbar1 (TGR5) to repress NF-kappaB pathway and ameliorate diabetic nephropathy[J]. Pharmacol Res, 2020, 151: 104559.
Li S, Qiu M, Kong Y, et al. Bile acid G protein-coupled membrane receptor TGR5 modulates aquaporin 2-mediated water homeostasis[J]. J Am Soc Nephrol, 2018, 29(11): 2658-2670.
Li S, Li C, Wang W. Bile acid signaling in renal water regulation[J]. Am J Physiol Renal Physiol, 2019, 317(1): F73-f76.
Han M, Li S, Xie H, et al. Activation of TGR5 restores AQP2 expression via the HIF pathway in renal ischemia-reperfusion injury[J]. Am J Physiol Renal Physiol, 2021, 320(3): F308-f321.
Zhao CL, Amin A, Hui Y, et al. TGR5 expression in normal kidney and renal neoplasms[J]. Diagn Pathol, 2018, 13(1): 22.
Guo C, Chen WD, Wang YD. TGR5, not only a metabolic regulator[J]. Front Physiol, 2016, 7: 646.
Pols TWH, Nomura M, Harach T, et al. TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading[J]. Cell Metab, 2011, 14(6): 747-757.
Calmus Y, Guechot J, Podevin P, et al. Differential effects of chenodeoxycholic and ursodeoxycholic acids on interleukin 1, interleukin 6 and tumor necrosis factor-alpha production by monocytes[J]. Hepatology (Baltimore, Md), 1992, 16(3): 719-723.
Huang WD, Ma K, Zhang J, et al. Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration[J]. Science, 2006, 312(5771): 233-236.
Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition[J]. Nat Rev Mol Cell Biol, 2014, 15(3): 178-196.
Marconi GD, Fonticoli L, Rajan TS, et al. Epithelial-mesenchymal transition (EMT): the type-2 EMT in wound healing, tissue regeneration and organ fibrosis[J]. Cells, 2021, 10(7): 1587.
Li D, Zhang J, Yuan S, et al. TGF-β1 peptide-based inhibitor P144 ameliorates renal fibrosis after ischemia-reperfusion injury by modulating alternatively activated macrophages[J]. Cell Prolif, 2022, 55(10): e13299.
张嫄怡, 李春鸣, 张霞, 等. KAI1通过调节TGF-β1/Smad2信号通路减弱上皮-间充质转化抑制胃癌细胞的侵袭和迁移[J]. 遵义医科大学学报, 2023, 46(4): 388-395.
Zhang YY, li CM, Zhang X, et al. KAI1 Suppresses invasion and metastasis of gastric cancer by regulating the epithelial-mesenchymal transition through the TGF-β1 /Smad2 signaling pathway[J]. J Zunyi Med Univ, 2023, 46(4): 388-395.
Meng XM, Nikolic-Paterson DJ, Lan HY. TGF-β: the master regulator of fibrosis[J]. Nat Rev Nephrol, 2016, 12(6): 325-338.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构