1.中山大学附属第一医院麻醉疼痛科, 广东 广州 510080
2.中山大学中山医学院生理教研室//中山大学疼痛研究中心, 广东 广州 510080
刘安然,研究方向:慢性疼痛的机制研究,E-mail:liua.anran@outlook.com
纸质出版日期:2023-07-20,
收稿日期:2023-03-25,
扫 描 看 全 文
刘安然,林震嘉,彭湘格等.鞘内注射2R, 6R-HNK缓解雌性小鼠的神经病理性疼痛[J].中山大学学报(医学科学版),2023,44(04):607-616.
LIU An-ran,LIN Zhen-jia,PENG Xiang-ge,et al.Analgesic Effect of Intrathecal 2R, 6R-HNK on Neuropathic Pain in Female Mice[J].Journal of Sun Yat-sen University(Medical Sciences),2023,44(04):607-616.
刘安然,林震嘉,彭湘格等.鞘内注射2R, 6R-HNK缓解雌性小鼠的神经病理性疼痛[J].中山大学学报(医学科学版),2023,44(04):607-616. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20230523.002.
LIU An-ran,LIN Zhen-jia,PENG Xiang-ge,et al.Analgesic Effect of Intrathecal 2R, 6R-HNK on Neuropathic Pain in Female Mice[J].Journal of Sun Yat-sen University(Medical Sciences),2023,44(04):607-616. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20230523.002.
目的
2
初步探究鞘内注射2R, 6R-羟化去甲氯胺酮(2R, 6R-HNK)对慢性神经病理性疼痛(CNP)的镇痛作用及其机制。
方法
2
采用坐骨神经选择性损伤(SNI)诱导的CNP模型。将雌性小鼠随机分不同组:假手术或SNI术后3 周或术前30 min/1 d给予溶剂、2R, 6R-HNK、S-ketamine(10 mg/kg腹腔注射或7、21 μmol/L鞘内注射)(每组3 ~ 7只)。采用机械缩足阈值(PWT)和镇痛效率评估2R, 6R-HNK的治疗或预防效果。再用免疫荧光和RT-PCR方法检测背根神经节(DRG)和脊髓背角中蛋白转录及表达水平,并探讨其可能的作用机制。
结果
2
鞘内注射2R, 6R-HNK剂量依赖地缓解雌性小鼠SNI建模3 周的双侧机械痛敏;其中21 μmol/L 2R, 6R-HNK的镇痛效率达峰时间为2 d,峰值为(75.32±7.69)%。预先鞘内2R, 6R-HNK还能延迟SNI诱导双侧机械痛敏产生2 ~ 3 d。机制上,2R, 6R-HNK预处理不仅显著抑制SNI引起的双侧DRG和脊髓背角浅层神经元异常兴奋,还下调DRG内降钙素基因相关肽(CGRP)及脑源性神经生长因子(BDNF)的高表达。
结论
2
鞘内注射2R, 6R-HNK通过抑制上行痛觉通路神经元异常兴奋并下调DRG神经元CGRP和BDNF表达从而对CNP产生镇痛作用。
Objective
2
To investigate the analgesic action and mechanism of intrathecal 2R, 6R-hydroxynorketamine (2R, 6R-HNK) on spared nerve injury (SNI)-induced chronic neuropathic pain (CNP) in female mice.
Methods
2
SNI was used to establish acute and chronic CNP models in female mice. The mice were randomly divided into different groups with administration of vehicle, 2R, 6R-HNK or S-ketamine (10 mg/kg intraperitoneal injection/i.p. or 7, 21 μmol/L intrathecal injection/i.t.) at 3 weeks after or 30 min/1 d before operation (
n
= 3 - 7 mice/group). The curative or preventive effect of 2R, 6R-HNK was evaluated by mechanical paw withdrawal threshold (PWT) and the analgesic efficiency. Finally, immunofluorescence and RT-PCR of dorsal root ganglion (DRG) and spinal dorsal horn (SDH) were used to explore the possible mechanisms.
Results
2
Compared with vehicle, intrathecal injection of 2R, 6R-HNK largely reversed SNI-induced bilateral mechanical allodynia in a delayed-and-dose-dependent way. Among them, 21 μmol/L 2R, 6R-HNK reached its maximum analgesic efficiency (75.32±7.69) % at 2 d. Pre-intrathecal delivery of 2R, 6R-HNK also delayed the development of bilateral mechanical hypersensitivity 2 - 3 d induced by SNI. Mechanically, 2R, 6R-HNK reversed not only the abnormal excitability of neurons in bilateral DRG and superficial SDH, but also the upregulation of calcitonin gene-related peptide (CGRP) and brain-derived nerve growth factor (BDNF) in DRG.
Conclusion
2
Intrathecal administration of 2R, 6R-HNK exerts an analgesic effect against CNP, probably via suppressing abnormal neuronal excitability in ascending pain pathway as well as down-regulating CGRP and BDNF expression in DRG neurons.
神经病理性疼痛2R,6R-羟化去甲氯胺酮背根神经节降钙素基因相关肽
neuropathic pain2R, 6R-hydroxynorketamine (2R, 6R-HNK)dorsal root ganglioncalcitonin gene-related peptide (CGRP)
Treede RD, Rief W, Barke A, et al. Chronic pain as a symptom or a disease: the IASP classification of chronic pain for the international classification of diseases (ICD-11)[J]. Pain, 2019, 160(1): 19-27.
Scholz J, Finnerup NB, Attal N, et al. The IASP classification of chronic pain for ICD-11: chronic neuropathic pain[J]. Pain, 2019, 160(1): 53-59.
Pricope CV, Tamba BI, Stanciu GD, et al. The roles of imaging biomarkers in the management of chronic neuropathic pain[J]. Int J Mol Sci, 2022, 23(21): 13038.
Mercer Lindsay N, Chen C, Gilam G, et al. Brain circuits for pain and its treatment[J]. Sci Transl Med, 2021, 13(619): eabj7360.
Cohen SP, Vase L, Hooten WM. Chronic pain: an update on burden, best practices, and new advances[J]. Lancet, 2021, 397(10289): 2082-2097.
Zanos P, Moaddel R, Morris PJ, et al. Ketamine and ketamine metabolite pharmacology: insights into therapeutic mechanisms[J]. Pharmacol Rev, 2018, 70(3): 621-660.
Henter ID, Park LT, Zarate CA, Jr. Novel glutamatergic modulators for the treatment of mood disorders: current status[J]. CNS Drugs, 2021, 35(5): 527-543.
Moaddel R, Abdrakhmanova G, Kozak J, et al. Sub-anesthetic concentrations of (R, S)-ketamine metabolites inhibit acetylcholine-evoked currents in alpha7 nicotinic acetylcholine receptors[J]. Eur J Pharmacol, 2013, 698(1-3): 228-234.
Highland JN, Zanos P, Riggs LM, et al. Hydroxynorketamines: pharmacology and potential therapeutic applications[J]. Pharmacol Rev, 2021, 73(2): 763-791.
Kroin JS, Das V, Moric M, et al. Efficacy of the ketamine metabolite (2R, 6R)-hydroxynorketamine in mice models of pain[J]. Reg Anesth Pain Med, 2019, 44(1): 111-117.
Yost JG, Wulf HA, Browne CA, et al. Antinociceptive and analgesic effects of (2R, 6R)-hydroxynorketamine[J]. J Pharmacol Exp Ther, 2022, 382(3): 256-265.
Yost JG, Browne CA, Lucki I. (2R, 6R)-hydroxynorketamine(HNK) reverses mechanical hypersensitivity in a model of localized inflammatory pain[J]. Neuropharmacology, 2022, 221: 109276.
Goswami N, Aleem M, Manda K. Intranasal (2R, 6R)-hydroxynorketamine for acute pain: behavioural and neurophysiological safety analysis in mice[J]. Clin Exp Pharmacol Physiol, 2023, 50(2): 169-177.
Carrier N, Kabbaj M. Sex differences in the antidepressant-like effects of ketamine[J]. Neuropharmacology, 2013, 70: 27-34.
Franceschelli A, Sens J, Herchick S, et al. Sex differences in the rapid and the sustained antidepressant-like effects of ketamine in stress-naive and "depressed" mice exposed to chronic mild stress[J]. Neuroscience, 2015, 290: 49-60.
Zanos P, Moaddel R, Morris PJ, et al. NMDAR inhibition-independent antidepressant actions of ketamine metabolites[J]. Nature, 2016, 533(7604): 481-486.
Lumsden EW, Troppoli TA, Myers SJ, et al. Antidepressant-relevant concentrations of the ketamine metabolite (2R, 6R)-hydroxynorketamine do not block NMDA receptor function[J]. Proc Natl Acad Sci USA, 2019, 116(11): 5160-5169.
Deuis JR, Dvorakova LS, Vetter I. Methods used to evaluate pain behaviors in rodents[J]. Front Mol Neurosci, 2017, 10: 284.
Zhou LJ, Peng J, Xu YN, et al. Microglia are indispensable for synaptic plasticity in the spinal dorsal horn and chronic pain[J]. Cell Rep, 2019, 27(13): 3844-3859. e6.
Decosterd I, Woolf CJ. Spared nerve injury: an animal model of persistent peripheral neuropathic pain[J]. Pain, 2000, 87(2): 149-158.
Lilius TO, Viisanen H, Jokinen V, et al. Interactions of (2S, 6S;2R, 6R)-hydroxynorketamine, a secondary metabolite of (R, S)-ketamine, with morphine[J]. Basic Clin Pharmacol Toxicol, 2018, 122(5): 481-488.
Laffleur F, Bauer B. Progress in nasal drug delivery systems[J]. Int J Pharm, 2021, 607: 120994.
Zanos P, Highland JN, Liu X, et al. (R)-ketamine exerts antidepressant actions partly via conversion to (2R, 6R)-hydroxynorketamine, while causing adverse effects at sub-anaesthetic doses[J]. Br J Pharmacol, 2019, 176(14): 2573-2592.
Walker SM, Westin BD, Deumens R, et al. Effects of intrathecal ketamine in the neonatal rat: evaluation of apoptosis and long-term functional outcome[J]. Anesthesiology, 2010, 113(1): 147-159.
Truin M, Janssen SP, van Kleef M, et al. Successful pain relief in non-responders to spinal cord stimulation: the combined use of ketamine and spinal cord stimulation[J]. Eur J Pain, 2011, 15(10): 1049 e1-1049. e9.
da Costa FLP, Pinto MCX, Santos DC, et al. Ketamine potentiates TRPV1 receptor signaling in the peripheral nociceptive pathways[J]. Biochem Pharmacol, 2020, 182: 114210.
Pham TH, Defaix C, Xu X, et al. Common neurotransmission recruited in (R, S)-ketamine and (2R, 6R)-hydroxynorketamine-induced sustained antidepressant-like effects[J]. Biol Psychiatry, 2018, 84(1): e3-e6.
Russell FA, King R, Smillie SJ, et al. Calcitonin gene-related peptide: physiology and pathophysiology[J]. Physiol Rev, 2014, 94(4): 1099-1142.
Rees TA, Hendrikse ER, Hay DL, et al. Beyond CGRP: the calcitonin peptide family as targets for migraine and pain[J]. Br J Pharmacol, 2022, 179(3): 381-399.
Kang SA, Govindarajan R. Anti-calcitonin gene-related peptide monoclonal antibodies for neuropathic pain in patients with migraine headache[J]. Muscle Nerve, 2021, 63(4): 563-567.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构