中山大学附属第五医院放射科,广东 珠海 519000
谢青,第一作者,研究方向:中枢神经系统功能磁共振成像,E-mail:xieq33@mail.sysu.edu.cn
纸质出版日期:2024-01-20,
收稿日期:2023-09-21,
录用日期:2023-12-03
扫 描 看 全 文
谢青,吴文浩,廖健伟等.集成磁共振成像技术评估COVID-19康复患者神经损伤[J].中山大学学报(医学科学版),2024,45(01):114-120.
XIE Qing,WU Wenhao,LIAO Jianwei,et al.Synthetic MRI to Assess Neurological Injury in Recovered COVID-19 Patients[J].Journal of Sun Yat-sen University(Medical Sciences),2024,45(01):114-120.
谢青,吴文浩,廖健伟等.集成磁共振成像技术评估COVID-19康复患者神经损伤[J].中山大学学报(医学科学版),2024,45(01):114-120. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20240004.012.
XIE Qing,WU Wenhao,LIAO Jianwei,et al.Synthetic MRI to Assess Neurological Injury in Recovered COVID-19 Patients[J].Journal of Sun Yat-sen University(Medical Sciences),2024,45(01):114-120. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20240004.012.
目的
2
应用集成磁共振成像技术(SyMRI)评估COVID-19康复患者脑灰质微结构的改变。
方法
2
29例COVID-19康复患者分为重症患者组(SG=11例)和普通患者组(OG=18例),选取年龄、性别、体质指数(BMI)和教育年限相匹配的健康志愿者作为健康对照组(HC=23例)。所有受试者均行SyMRI扫描,生成T
1
、T
2
定量图谱,利用自动解剖标记(AAL)模板将T
1
和T
2
图谱分割成90个感兴趣区(ROIs)。通过对ROI内的所有体素进行平均得到每个ROI的T
1
、T
2
弛豫值。分析比较三组间90个脑区的T
1
、T
2
值。
结果
2
HC相比,SG在双侧眶内额上回、双侧海马旁回、双侧豆状壳核、双侧颞中回、双侧颞下回、左侧眶部额上回、左侧眶部额下回、左侧直回、左侧前扣带与旁扣带脑回、右侧内侧和旁扣带脑回、左侧后扣带回、左侧缘上回的T
2
值显著升高(
P
<
0.05);与OG相比,SG在左侧直回、左侧海马旁回、双侧颞中回、双侧颞下回的T
2
值显著升高(
P
<
0.05)。与HC相比SG在双侧眶内额上回、左侧直回、左侧前扣带和旁扣带脑回、右侧后扣带回、左侧海马旁回、左侧舌回、左侧豆状壳核、左侧丘脑的T
1
值显著升高(
P
<
0.05);与OG相比,SG在右侧后扣带回、右侧距状裂周围皮层、左侧豆状壳核的T
1
值显著升高(
P
<
0.05)。
结论
2
COVID-19患者即使在康复后脑灰质微结构仍可能存在持续性或迟发性损伤,且损伤程度与病情严重程度相关;SyMRI可作为一项敏感的工具评估中枢神经系统(CNS)微结构损伤情况,有助于早期临床诊断。
Objective
2
To assess the microstructural involvement of gray matter in recovered COVID-19 patients using Synthetic MRI.
Methods
2
This study was conducted in 29 recovered COVID-19 patients, including severe group (SG,
n
=11) and ordinary group (OG,
n
=18). Healthy volunteers matched by age, sex, BMI and years of education were selected as a healthy control group (HC=23 cases). Each subject underwent synthetic MRI to generate quantitative T
1
and T
2
maps, and the T
1
and T
2
maps were segmented into 90 regions of interest (ROIs) using automatic anatomical labeling (AAL) mapping. T
1
and T
2
values for each ROI were obtained by averaging all voxels within the ROIs. The T
1
and T
2
values of the 90 brain regions between the three groups were compared.
Results
2
Relative to HC, the SG had significantly higher T2 values in bilateral orbital superior frontal gyrus, bilateral parahippocampal gyrus, bilateral putamen, bilateral middle temporal gyrus, bilateral Inferior temporal gyrus, left orbital superior frontal gyrus, left orbital inferior frontal gyrus, left gyrus rectus, left anterior cingulate and paracingulate gyri, right median cingulate and paracingulate gyri, left posterior cingulate gyrus, and left supramarginal gyrus (
P
<0.05); Relative to OG, SG showed significantly increased T
2
values in the left rectus gyrus, left parahippocampal gyrus, bilateral middle temporal gyrus, and bilateral inferior temporal gyrus (
P
<0.05). Relative to HC, the T
1
values of SG were significantly increased in bilateral orbital superior frontal gyrus, left rectus gyrus, left anterior cingulate and paracingulate gyri, right posterior cingulate gyrus, left parahippocampal gyrus, left lingual gyrus, left putamen, left thalamus(
P
<0.05); Relative to OG, the T
1
values of SG were significantly higher in the right posterior cingulate gyrus, right calcarine fissure and surrounding cortex, and left putamen (
P
<0.05).
Conclusions
2
Even after recovering from COVID-19, patients may still have persistent or delayed damage to their brain gray matter structure, which is correlated with the severity of the condition. SyMRI can serve as a sensitive tool to assess the extent of microstructural damage to the central nervous system, aiding in early diagnosis of the disease.
合成磁共振成像技术新型冠状病毒感染康复期中枢神经系统神经损伤
synthetic MRICOVID-19recoveryCNSneurological injury
Pajo AT, Espiritu AI, Apor ADAO, et al. Neuropathologic findings of patients with COVID-19: a systematic review[J]. Neurol Sci, 2021, 42(4): 1255-1266.
Hingorani KS, Bhadola S, Cervantes-Arslanian AM. COVID-19 and the brain[J]. Trends Cardiovasc Med, 2022, 32(6): 323-330.
Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China[J]. JAMA Neurology, 2020, 77(6): 683-690.
de Erausquin GA, Snyder H, Carrillo M, et al. The chronic neuropsychiatric sequelae of COVID-19: the need for a prospective study of viral impact on brain functioning[J]. Alzheimers Dement, 2021, 17(6): 1056-1065.
Stefanou MI, Palaiodimou L, Bakola E, et al. Neurological manifestations of long-COVID syndrome: a narrative review[J]. Ther Adv Chronic Dis, 2022, 13: 20406223221076890.
Varatharaj A, Thomas N, Ellul MA, et al. Neurological and neuropsychiatric complications of COVID-19 in 153 patients: a UK-wide surveillance study[J]. Lancet Psychiatry, 2020, 7(10): 875-882.
Soriano JB, Murthy S, Marshall JC, et al. A clinical case definition of post-COVID-19 condition by a Delphi consensus[J]. Lancet Infect Dis, 2022, 22(4): e102-e107.
杨可鑫, 杨丽芬, 李旭峰, 等. 特殊人群新型冠状病毒感染者诊疗方案(中山大学附属第三医院)[J]. 新医学, 2023, 54(2): 87-96.
Yang KX, Yang LF, Li XF, et al. Diagnosis and Treatment Protocol for Special Population lnfected with COVID-19(TheThird Affiliated Hospital of Sun Yatsen University)[J]. J New Med, 2023, 54(2): 87-96.
Khodanovich MY, Kamaeva DA, Naumova AV. Role of demyelination in the persistence of neurological and mental impairments after COVID-19[J]. Intern J Mol Sci, 2022, 23(19): 11291.
Tremblay ME, Madore C, Bordeleau M, et al. Neuropathobiology of COVID-19: the role for glia[J]. Front Cell Neurosci, 2020, 14: 592214.
Crunfli F, Carregari VC, Veras FP, et al. Morphological, cellular, and molecular basis of brain infection in COVID-19 patients[J]. Proc Natl Acad Sci U S A, 2022, 119(35): e2200960119.
Douaud G, Lee S, Alfaro-Almagro F, et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank[J]. Nature, 2022, 604(7907): 697-707.
Ismail II, Salama S. Association of CNS demyelination and COVID-19 infection: an updated systematic review[J]. J Neurol, 2022, 269(2): 541-576.
Savelieff MG, Feldman EL, Stino AM. Neurological sequela and disruption of neuron-glia homeostasis in SARS-CoV-2 infection[J]. Neurobiol Dis, 2022, 168: 105715.
Jackson A. Quantitative MRI of the brain: measuring changes caused by disease[J]. British J Radiol, 2005, 78: 86-88.
Krauss W, Gunnarsson M, Andersson T, et al. Accuracy and reproducibility of a quantitative magnetic resonance imaging method for concurrent measurements of tissue relaxation times and proton density[J]. Magn Reson Imaging, 2015, 33(5): 584-591.
Moore GR, Laule C, Mackay A, et al. Dirty-appearing white matter in multiple sclerosis: preliminary observations of myelin phospholipid and axonal loss[J]. J Neurol, 2008, 255(11): 1802-1811.
Seewann A, Vrenken H, van der Valk P, et al. Diffusely abnormal white matter in chronic multiple sclerosis: imaging and histopathologic analysis[J]. Arch Neurol, 2009, 66(5): 601-609.
van Walderveen MA, Barkhof F, Pouwels PJ, et al. Neuronal damage in T1-hypointense multiple sclerosis lesions demonstrated in vivo using proton magnetic resonance spectroscopy[J]. Ann Neurol, 1999, 46(1): 79-87.
Zubair AS, McAlpine LS, Gardin T, et al. Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of coronavirus disease 2019: a review[J]. JAMA Neurology, 2020, 77(8): 1018-1027.
Aghagoli G, Gallo Marin B, Katchur NJ, et al. Neurological involvement in COVID-19 and potential mechanisms: a review[J]. Neurocrit Care, 2021, 34(3): 1062-1071.
Mesci P, de Souza JS, Martin-Sancho L, et al. SARS-CoV-2 infects human brain organoids causing cell death and loss of synapses that can be rescued by treatment with Sofosbuvir[J]. PLoS Biology, 2022, 20(11): e3001845.
Kanberg N, Ashton NJ, Andersson LM, et al. Neurochemical evidence of astrocytic and neuronal injury commonly found in COVID-19[J]. Neurology, 2020, 95(12): e1754-e1759.
杨伊, 江佳佳, 刘雅菁, 等. 新型冠状病毒相关吉兰-巴雷综合征7例临床分析[J]. 中国神经精神疾病杂志, 2023, 49(6): 340-344.
Yang Y, Jiang JJ, Liu YJ, et al. Clinical analysis of 7 cases of novel coronavirus associated Guillain-Barre syndrome[J]. Chin J Nerv Ment Dis, 2023, 49(6): 340-344.
Qin Y, Wu J, Chen T, et al. Long-term microstructure and cerebral blood flow changes in patients recovered from COVID-19 without neurological manifestations[J]. J Clin Invest, 2021, 131(8): e147329.
Tian T, Wu J, Chen T, et al. Long-term follow-up of dynamic brain changes in patients recovered from COVID-19 without neurological manifestations[J]. JCI Insight, 2022, 7(4): e155827.
Lu Y, Li X, Geng Det al. Cerebral micro-structural changes in COVID-19 patients - an MRI-based 3-month follow-up study[J]. EClinicalMedicine, 2020, 25: 100484.
Desforges M, Le Coupanec A, Dubeau P, et al. Human coronaviruses and other respiratory viruses: Underestimated opportunistic pathogens of the central nervous system? [J]. Viruses, 2019, 12(1): 14.
Netland J, Meyerholz DK, Moore S, et al. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2[J]. J Virol, 2008, 82(15): 7264-7275.
Politi LS, Salsano E, Grimaldi M. Magnetic resonance imaging alteration of the brain in a patient with coronavirus disease 2019 (COVID-19) and anosmia[J]. JAMA Neurology, 2020, 77(8): 1028-1029.
Reichard RR, Kashani KB, Boire NA, et al. Neuropathology of COVID-19: a spectrum of vascular and acute disseminated encephalomyelitis (ADEM)-like pathology[J]. Acta Neuropathologica, 2020, 140(1): 1-6.
Bhaskar S, Sinha A, Banach M, et al. Cytokine storm in COVID-19—immunopathological mechanisms, clinical considerations, and therapeutic approaches: the REPROGRAM consortium position paper[J]. Front Immunol, 2020, 11: 1648.
0
浏览量
22
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构