1.安徽医科大学附属省儿童医院泌尿外科,安徽 合肥 230051
2.安徽医科大学第五临床医学院泌尿外科,安徽 合肥 230051
吴飞,第一作者,研究方向:小儿泌尿外科,E-mail:wufeiofahmu@163.com
纸质出版日期:2024-01-20,
收稿日期:2023-09-12,
录用日期:2023-12-03
扫 描 看 全 文
吴飞,潮敏,张殷等.神经胶质细胞系衍生神经营养因子和雄激素受体在手术诱导隐睾小鼠睾丸管周细胞中的表达[J].中山大学学报(医学科学版),2024,45(01):85-92.
WU Fei,CHAO Min,ZHANG Yin,et al.Expression of GDNF and AR in Testicular Peritubular Cells of Surgery-induced Cryptorchidism Mice[J].Journal of Sun Yat-sen University(Medical Sciences),2024,45(01):85-92.
吴飞,潮敏,张殷等.神经胶质细胞系衍生神经营养因子和雄激素受体在手术诱导隐睾小鼠睾丸管周细胞中的表达[J].中山大学学报(医学科学版),2024,45(01):85-92. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20240004.020.
WU Fei,CHAO Min,ZHANG Yin,et al.Expression of GDNF and AR in Testicular Peritubular Cells of Surgery-induced Cryptorchidism Mice[J].Journal of Sun Yat-sen University(Medical Sciences),2024,45(01):85-92. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20240004.020.
目的
2
探讨神经胶质细胞系衍生神经营养因子(GDNF)和雄激素受体(AR)在隐睾症小鼠睾丸管周细胞中的表达水平及对隐睾症导致生精功能障碍的理论意义。
方法
2
30只5周龄雄性ICR小鼠采用随机数字表法随机分配至6组中,随机抽取3组15只小鼠进行手术诱导隐睾,其余3组为作为对照组进行假手术处理。分别于4 d、7 d、14 d后取各组睾丸组织,然后测量睾丸体积、观察睾丸组织病理,提取各组睾丸管周细胞后利用免疫荧光、Real-Time PCR和蛋白质印记法检测AR和GDNF的mRNA和蛋白的表达。
结果
2
对照组4 d、7 d、14 d小鼠的睾丸体积分别为(125.58±19.22)mm
3
、(123.45±20.12)mm
3
、(140.09±13.62)mm
3
;睾丸各级生精细胞排列整齐、层次清楚,可见较多精子细胞,生精小管周围管周细胞形态规则,呈梭形围绕小管周围,细胞厚度均一;ARmRNA的表达量分别为1.00±0.05、1.06±0.07、1.19±0.13GDNFmRNA的表达量分别为1.00±0.04、1.09±0.05、1.10±0.07;AR蛋白的表达量分别为1.01±0.01、0.79±0.02、1.01±0.04;GDNF蛋白的浓度分别为(18.68±0.43)pg/mL、(14.39±0.36)pg/mL、(16.88±0.37)pg/mL。隐睾组4 d、7 d、14 d小鼠的睾丸体积分别为(115.64±3.91)mm
3
、(69.51±14.97)mm
3
、(44.86±5.56)mm
3
;睾丸各级生精细胞排列紊乱、层次不清、结构破坏,曲细精管周围管周细胞萎缩、弯曲断裂;ARmRNA的表达量分别为0.76±0.06、0.53±0.04、0.29±0.02;GDNFmRNA的表达量分别为0.72±0.05、0.42±0.02、0.30±0.03;AR蛋白的表达量分别为0.54±0.02、0.98±0.04、0.31±0.01;GDNF蛋白的浓度分别为(8.50±0.34)pg/mL、(17.44±0.32)pg/mL、(6.83±0.34)pg/mL。上述指标与对照组相比,除了4 d的睾丸体积差异无统计学意义(
P
>
0.05),其他均有统计学差异(
P
<
0.05)。对照组中3个时间点的睾丸体积、AR和GDNF的mRNA、蛋白表达量的差异无统计学意义(
P
>
0.05),隐睾组3个时间点的睾丸体积、AR和GDNF的mRNA、蛋白表达量呈逐渐下降趋势且各组之间的差异均有统计学意义(
P
<
0.05)。
结论
2
在手术诱导隐睾小鼠中,睾丸管周细胞的AR和GDNF的表达水平随着诱导时间的延长呈现显著下降。AR和GDNF在隐睾症介导睾丸管周细胞功能的损伤中有重要作用。本研究为阐明隐睾症导致生精功能障碍的机制研究提供理论基础。
Objective
2
To investigate the expression of glial cell line-derived neurotrophic factor (GDNF) and androgen receptor (AR) in testicular peritubular cells (TPCs) of cryptorchidism mouse models and explore the theoretical significance of cryptorchidism-induced spermatogenesis dysfunction.
Methods
2
A total of 30 five-week-old male ICR rats were divided randomly by using random number table method into 6 groups. Cryptorchidism was surgically induced in 3 randomly selected groups and the other 3 groups underwent sham surgery as the control groups. On days 4, 7 and 14 after surgery, we harvested the mice testes of the 3 groups and their corresponding control groups, then measured the testicular volumes, analyzed the testicular histopathology and detected the mRNA and protein expression levels of AR and GDNF in TPCs by immunofluorescence, real-time PCR and Western blot.
Results
2
In normal control groups, on days 4, 7 and 14 after surgery, the testicular volumes were (125.58±19.22) mm
3
,(123.45±20.12) mm
3
, (140.09±13.62) mm
3
, respectively. Clear layers of spermatogenic cells were well arranged and abundant sperm cells were found. Peritubular cells were morphologically homogeneous, with slim-spindle appearance and normal cell thickness. The mRNA expression levels of AR were 1.00±0.05, 1.06±0.07 and 1.19±0.13; GDNF mRNA 1.00±0.04, 1.09±0.05, and 1.10±0.07. The protein expression levels of AR were 1.01±0.01, 0.79±0.02 and 1.01±0.04; GDNF protein (18.68±0.43) pg/mL, (14.39±0.36) pg/mL and (16.88±0.37) pg/mL. In cryptorchidism groups, on days 4, 7 and 14 after surgery, the testicular volumes were (115.64±3.91) mm
3
, (69.51±14.97) mm
3
and (44.86±5.56) mm
3
, respectively. Spermatogenic cells were disorganized, seminiferous tubules were disrupted, peritubular cells shrank, bent and fractured. The mRNA expression levels of AR were 0.76±0.06, 0.53±0.04, and 0.29±0.02; GDNF mRNA 0.72±0.05, 0.42±0.02 and 0.30±0.03. The protein expression levels of AR were 0.54±0.02, 0.98±0.04 and 0.31±0.01; GDNF protein (8.50±0.34) pg/mL, (17.44±0.32) pg/mL and (6.83±0.34) pg/mL. Statistically significant differences (
P
<
0.05) were found in 7-day and 14-day testicular volumes between control and cryptorchidism groups but not in the 4-day testicular volume (
P
>
0.05). Testicular volumes, AR and GDNF mRNA and protein expression in control groups had no statistically significant difference (
P
>
0.05), while those in cryptorchidism groups showed a trend of gradual decline in the amount and the differences between groups were statistically significant (
P
<
0.05).
Conclusions
2
In surgery-induced cryptorchidism mice, after the induction, the expression of AR and GDNF in TPCs showed a gradual decrease over time. AR and GDNF play a major role in mediating the TPCs damage in cryptorchidism. This study provides a theoretical basis for mechanism researches of cryptorchidism-induced spermatogenesis dysfunction.
隐睾症管周细胞胶质细胞系衍生神经营养因子雄激素受体
cryptorchidismtesticular peritubular cells (TPCs)glial cell line-derived neurotrophic factor (GDNF)androgen receptor (AR)
粟闵, 李芝隆, 宋雅平, 等. TAB2基因多态性与中国西南汉族人群隐睾症易感性的相关性研究[J]. 四川大学学报(医学版), 2022, 53(4): 642-648.
Su M, Li ZL, Song YP, et al. Association Between TAB2 Gene Polymorphisms and Susceptibility to Cryptorchidism inHan Chinese Population in Southwest China
J]. J Sichuan Univ ( Med Sci ), 2022, 53(4): 642-648.
Oatley JM, Brinster RL. The germline stem cell niche unit in mammalian testes[J]. Physiol Rev, 2012, 92(2): 577-595.
Defalco T, Bhattacharya I, Williams AV, et al. Yolk-sac-derived macrophages regulate fetal testis vascularization and morphogenesis[J]. Proc Natl Acad Sci U S A, 2014, 111(23): E2384-2393.
吴悔, 宁港, 周兴. 基于睾丸微环境探讨支持细胞及管周肌样细胞对间质细胞合成睾酮的影响[J]. 中华男科学杂志, 2022, 28(6): 534-537.
Wu H, Ning G, Zhou X. Effects of Sertoli cells and peritubular myoid cells on testosterone synthesis in Leydig cells: Analysis based on the testicular microenvironment[J]. Natl J Androl, 2022, 28(6): 534-537.
Ross MH. The fine structure and development of the peritubular contractile cell component in the seminiferous tubules of the mouse[J]. Am J Anat, 1967, 121(3): 523-557.
程丹, 李洁, 池艳, 等. Attractin蛋白在不同病理分型无精子症患者睾丸组织中的表达[J]. 中华腔镜泌尿外科杂志(电子版), 2012(2): 55-57.
Cheng D, Li J, Chi Y, et al. Expression of Attractin protein in testicular tissues of patients with different pathological classifications of azoospermia[J]. Chin J Endourol (Elec Edi), 2012(2): 55-57.
De Rooij DG, Van Beek ME. Computer simulation of the rodent spermatogonial stem cell niche[J]. Biol Reprod, 2013, 88(5): 131.
França LR, Hess RA, Dufour JM, et al. The Sertoli cell: one hundred fifty years of beauty and plasticity[J]. Andrology, 2016, 4(2): 189-212.
O'donnell L, Smith LB, Rebourcet D. Sertoli cells as key drivers of testis function[J]. Semin Cell Dev Biol, 2022, 121: 2-9.
Heinrich A, Defalco T. Essential roles of interstitial cells in testicular development and function[J]. Andrology, 2020, 8(4): 903-914.
Zhou R, Wu J, Liu B, et al. The roles and mechanisms of Leydig cells and myoid cells in regulating spermatogenesis[J]. Cell Mol Life Sci, 2019, 76(14): 2681-2695.
Aldahhan RA, Stanton PG, Ludlow H, et al. Experimental cryptorchidism causes chronic inflammation and a progressive decline in sertoli cell and leydig cell function in the adult rat testis[J]. ReprodSci, 2021, 28(10): 2916-2928.
Paniagua R, Martinez-Onsurbe P, Santamaria L, et al. Quantitative and ultrastructural alterations in the lamina propria and Sertoli cells in human cryptorchid testes[J]. Intern J Androl, 1990, 13(6): 470-487.
Schell C, Albrecht M, Spillner S, et al. 15-Deoxy-delta 12-14-prostaglandin-J2 induces hypertrophy and loss of contractility in human testicular peritubular cells: implications for human male fertility[J]. Endocrinology, 2010, 151(3): 1257-1268.
Welter H, Kampfer C, Lauf S, et al. Partial loss of contractile marker proteins in human testicular peritubular cells in infertility patients[J]. Andrology, 2013, 1(2): 318-324.
Parekh PA, Garcia TX, Hofmann MC. Regulation of GDNF expression in sertoli cells[J]. Reproduction, 2019, 157(3): R95-R107.
Mayer C, Adam M, Walenta L, et al. Insights into the role of androgen receptor in human testicular peritubular cells[J]. Andrology, 2018, 6(5): 756-765.
王晓利, 李琦, 李春风, 等. 保留睾丸动脉的腹腔镜精索内静脉高位结扎术对精索静脉曲张致不育的疗效分析[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(3): 261-264.
Wang XL, Li Q, Li CF, et al. Analysis of the efficacy of laparoscopic high ligation of the internal spermatic vein with preservation of the testicular artery on varicocele-induced infertility[J]. Chin J Endourol (Elec Edi), 2023, 17(3): 261-264.
Chen LY, Willis WD, Eddy EM. Targeting the GDNF Gene in peritubular myoid cells disrupts undifferentiated spermatogonial cell development[J]. Proc Natl Acad Sci U S A, 2016, 113(7): 1829-1834.
Chen LY, Brown PR, Willis WB, et al. Peritubular myoid cells participate in male mouse spermatogonial stem cell maintenance[J]. Endocrinology, 2014, 155(12): 4964-4974.
Oatley MJ, Racicot KE, Oatley JM. Sertoli cells dictate spermatogonial stem cell niches in the mouse testis[J]. Biol Reprod, 2011, 84(4): 639-645.
Welsh M, Saunders PT, Atanassova N, et al. Androgen action via testicular peritubular myoid cells is essential for male fertility[J]. FASEB J, 2009, 23(12): 4218-4230.
0
浏览量
26
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构