1.上海交通大学医学院附属同仁医院内分泌内科,上海,200000
2.上海交通大学医学院虹桥国际医学研究院, 上海,200000
蔡冠军,第一作者,研究方向:内分泌与代谢病,E-mail:ad_caiguanjun@163.com
纸质出版日期:2024-07-20,
收稿日期:2024-03-31,
录用日期:2024-06-27
扫 描 看 全 文
蔡冠军,崔心远,李文毅等.转录因子KLF16对非酒精性脂肪肝病脂质代谢的影响[J].中山大学学报(医学科学版),2024,45(04):582-592.
CAI Guanjun,CUI Xinyuan,LI Wenyi,et al.Influence of Transcription Factor KLF16 on Lipid Metabolism in Non-alcoholic Fatty Liver Disease[J].Journal of Sun Yat-sen University(Medical Sciences),2024,45(04):582-592.
蔡冠军,崔心远,李文毅等.转录因子KLF16对非酒精性脂肪肝病脂质代谢的影响[J].中山大学学报(医学科学版),2024,45(04):582-592. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2024.0410.
CAI Guanjun,CUI Xinyuan,LI Wenyi,et al.Influence of Transcription Factor KLF16 on Lipid Metabolism in Non-alcoholic Fatty Liver Disease[J].Journal of Sun Yat-sen University(Medical Sciences),2024,45(04):582-592. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2024.0410.
目的
2
探究转录因子KLF16在非酒精性脂肪肝病(NAFLD)中的表达改变以及其对脂质代谢的影响。
方法
2
通过高脂饮食诱导小鼠构建NAFLD的动物模型。将小鼠分为正常饮食组(ND)和高脂饮食组(HFD);油酸诱导小鼠肝脏原代细胞构建NAFLD细胞模型。将细胞分为对照组(Control)和油酸诱导组(OA);实时荧光定量PCR (RT-qPCR)和蛋白免疫印迹技术(Western blot)方法检测NAFLD动物和细胞模型中KLF16的表达变化。通过小鼠尾静脉注射腺相关病毒(AAV)和细胞瞬时转染siRNA构建KLF16敲减的体内外模型。油红染色,苏木素伊红染色(HE)等方法检测KLF16敲减前后细胞NAFLD模型中脂质沉积的变化;RT-qPCR方法检测KLF16敲减前后细胞和动物NAFLD模型中脂质代谢关键基因表达的变化;Western blot方法检测KLF16敲减前后细胞NAFLD模型中内质网应激蛋白的表达。
结果
2
KLF16在HFD组和OA组表达水平上调,KLF16敲低后OA组脂质沉积加重,肝细胞内TC水平组间无变化(
P
>
0.05),TG水平出现不同程度的上升(
P
<
0.05,
P
<
0.001)。同时引发脂质代谢关键基因的改变,KLF16表达改变也引发OA组中内质网应激蛋白表达改变。
结论
2
转录因子KLF16可能通过内质网应激缓解非酒精性脂肪肝病的脂质沉积。
Objective
2
To explore the expression of transcription factor KLF16 in nonalcoholic fatty liver disease (NAFLD) and its effect on lipid metabolism.
Methods
2
An animal model of NAFLD was constructed in mice induced by a high-fat diet. The mice were divided into normal diet group (ND) and high fat diet group (HFD). NAFLD cell model was constructed by primary mouse liver cells induced by oleic acid. The cells were divided into control group (Control group) and oleic acid induction group (OA group). Real-time fluorescence quantitative PCR (RT-qPCR) and Western blot were used to detect KLF16 expression in NAFLD animal and cell models. In vitro and in vivo models of KLF16 knockdown were constructed by injection of adeno-associated virus (AAV) into mouse tail veins and transient transfection of cell siRNA. Hematoxylin-eosin staining (HE) and other methods were used to detect changes in lipid deposition in NAFLD models before and after KLF16 knockout. RT-qPCR was used to detect the expression of key genes of lipid metabolism in both cellular and animal NAFLD models before and after KLF16 knockdown. Western blot assay was used to detect the expression of endoplasmic reticulum stress protein in NAFLD model before and after KLF16 knockdown.
Results
2
The expression level of KLF16 was up-regulated in HFD group and OA group, and lipid deposition was increased in OA group after KLF16 was depressed. There was no change in TC level in hepatocytes between groups (
P
>
0.05), and TG level was increased in different degrees (
P
<
0.05,
P
<
0.001). At the same time, the change of KLF16 expression also caused the change of ER stress
protein expression in OA group.
Conclusion
2
The transcription factor KLF16 may alleviate lipid deposition in nonalcoholic fatty liver disease by endoplasmic reticulum stress.
克里佩尔样因子16内质网应激非酒精性脂肪肝病脂质代谢腺相关病毒基因敲减
Krüppel-like factor 16endoplasmic reticulum stressnonalcoholic fatty liver diseaselipid metabolismadeno-associated virusgene knockdown
Greenberg AS, Coleman RA, Kraemer FB, et al. The role of lipid droplets in metabolic disease in rodents and human[J]. J Clin Invest, 2011, 121(6): 2102-2110.
Loomba R, Friedman SL, Shulman GI. Mechanisms and disease consequences of nonalcoholic fatty liver disease[J]. Cell, 2021, 184(10): 2537-2564.
李锦忠,李敏然. 非酒精性脂肪性肝病导致肝细胞癌的特点和治疗策略[J]. 中华肝脏病杂志,2022,30(12):1392-1396.
Li JZ,Li MR.Characteristics and treatment strategies for hepatocellular carcinoma caused by nonalcoholic fatty liver disease[J]. Chin J Hepatol,2022,30(12):1392-1396.
Younossi ZM, Koenig AB, Abdelatif D, et al. Global epidemiology of nonalcoholic fatty liver disease - Meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology, 2016, 64(1): 73-84.
Ashraf NU, Sheikh TA. Endoplasmic reticulum stress and oxidative stress in the pathogenesis of non-alcoholic fatty liver disease[J]. Free Radic Res, 2015, 49(12): 1405-1418.
Baiceanu A, Mesdom P, Lagouge M, et al. Endoplasmic reticulum proteostasis in hepatic steatosis[J]. Nat Rev Endocrinol, 2016, 12(12): 710-722.
McConnell BB, Yang VW. Mammalian Krüppel-like factors in health and diseases[J]. Physiol Rev, 2010, 90(4): 1337-1381.
Sun N, Shen C, Zhang L, et al. Hepatic Krüppel-like factor 16 (KLF16) targets PPARα to improve steatohepatitis and insulin resistance[J]. Gut, 2021, 70(11): 2183-2195.
Diraison F, Moulin P, Beylot M. Contribution of hepatic de novo lipogenesis and reesterification of plasma non esterified fatty acids to plasma triglyceride synthesis during non-alcoholic fatty liver disease[J]. Diabetes Metab, 2003, 29(5): 478-485.
Wier BVD, Koek GH, Bast A, et al. The potential of flavonoids in the treatment of non-alcoholic fatty liver disease[J]. Crit Rev Food Sci Nutr, 2017, 57(4): 834-855.
Flessa CM, Kyrou L, Nasiri-Ansari N, et al. Endoplasmic reticulum stress and autophagy in the pathogenesis of non-alcoholic fatty liver disease (NAFLD): Current evidence and perspectives[J]. Curr Obes Rep, 2021, 10(2): 134-161.
Fujii J, Homma T, Kobayashi S, et al. Mutual interaction between oxidative stress and endoplasmic reticulum stress in the pathogenesis of diseases specifically focusing on non-alcoholic fatty liver disease[J]. World J Biol Chem, 2018, 9(1): 1-15.
Gariani K, Menzies KJ, Ryu D, et al. Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice[J]. Hepatology, 2016, 63(4): 1190-1204.
Chen Z, Tian R, She Z, et al. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease[J]. Free Radic Biol Med, 2020, 152: 116-141.
Zhang B, Li M, Zou Y, et al. Corrigendum: NFκB/Orai1 facilitates endoplasmic reticulum stress by oxidative stress in the pathogenesis of non-alcoholic fatty liver disease[J]. Front Cell Dev Biol, 2019, 7: 290.
Nassir F. NAFLD: mechanisms, treatments, and biomarkers[J]. Biomolecules, 2022, 12(6):824.
Geng Y, Faber KN, Meijer VE, et al. How does hepatic lipid accumulation lead to lipotoxicity in non-alcoholic fatty liver disease[J]. Hepatol Int, 2021, 15(1): 21-35.
刘念晨,段钟平,郑素军. 非酒精性脂肪性肝病与胆红素:关系,机制和治疗前景[J]. 中华肝脏病杂志,2023,31(1):101-104.
Liu NC,Duan ZP,Zheng SP. Nonalcoholic fatty liver disease and bilirubin: correlation, mechanism, and therapeutic perspectives[J]. Chin J Hepatol,2023,31(1):101-104.
Xu R, Pan J, Zhou W, et al. Recent advances in lean NAFLD[J]. Biomed Pharmacother, 2022, 153: 113331.
Yuce K, Ozkan AI. The kruppel-like factor (KLF) family, diseases, and physiological events[J]. Gene, 2024, 895: 148027.
Ma XD, Xu SD, Hao SH, et al. KLF16 enhances stress tolerance of colorectal carcinomas by modulating nucleolar homeostasis and translational reprogramming[J]. Mol Ther, 2022, 30(8): 2828-2843.
Zhang JX, Yan XJ, Wu S, et al. KLF16 overexpression deleteriously affects the proliferation and migration of retinoblastoma by transcriptionally repressing BCL2L15[J]. Biochem Biophys Res Commun, 2020, 529(4): 977-983.
Kim JK, Lee KS, Chang HY, et al. Progression of diet induced nonalcoholic steatohepatitis is accompanied by increased expression of Kruppel-like-factor 10 in mice[J]. J Transl Med, 2014, 12: 186.
Ajoolabady A, Kaplowitz N, Lebeaupin C, et al. Endoplasmic reticulum stress in liver diseases[J]. Hepatology, 2023, 77(2): 619-639.
Flessa, CM, Kyrou L, Ansari NN, et al. Endoplasmic reticulum stress in nonalcoholic (metabolic associated) fatty liver disease (NAFLD/MAFLD)[J]. J Cell Biochem, 2022, 123(10): 1585-1606.
Ipsen DH, Lykkesfeldt J, Tveden-Nyborg, Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease[J]. Cell Mol Life Sci, 2018, 75(18): 3313-3327.
Celik C, Lee SYT, Yap WS, et al. Endoplasmic reticulum stress and lipids in health and diseases[J]. Prog Lipid Res, 2023, 89: 101198.
Scorletti E, Carr RM. A new perspective on NAFLD: focusing on lipid droplets[J]. J Hepatol, 2022, 76(4): 934-945.
芈肖肖,严健,施军平. 成纤维细胞生长因子21类似物对非酒精性脂肪性肝病斑马鱼模型疾病指征的改善情况[J]. 中华肝脏病杂志,2023,31(7):742-749.
Mi XX,Yan J,Shi JP.Improvement situation on indexes of the zebrafish disease model of non-alcoholic fatty liver disease with FGF21 analogues[J].Chin J Hepatol,2023,31(7):742-749.
Svegliati-Baroni G, Pierantonelli I, Torquato P, et al. Lipidomic biomarkers and mechanisms of lipotoxicity in non-alcoholic fatty liver disease[J]. Free Radic Biol Med, 2019, 144: 293-309.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构