1.西藏民族大学医学院,陕西 咸阳 712082
2.兰州市疾病预防控制中心性病艾滋病防制科,甘肃 兰州 730030
3.兰州大学公共卫生学院流行病与卫生统计学系,甘肃 兰州 730000
4.兰州大学公共卫生学院卫生统计与智能分析研究所,甘肃 兰州 730000
邵莉,第一作者,研究方向:传染病流行病学,E-mail:shaoli@xzmu.edu.cn
陈继军,并列第一作者,研究方向:性病艾滋病控制
纸质出版日期:2024-03-20,
收稿日期:2023-12-07,
录用日期:2024-02-22
扫 描 看 全 文
邵莉,陈继军,张宇琦等.基于Bayes时空模型分析HIV/AIDS晚发现的时空分布特征及其影响因素[J].中山大学学报(医学科学版),2024,45(02):243-252.
SHAO Li,CHEN Jijun,ZHANG Yuqi,et al.Spatial-temporal Distribution and Influencing Factors of Late Diagnosis of HIV/AIDS Based on Bayes Spatial-temporal Model[J].Journal of Sun Yat-sen University(Medical Sciences),2024,45(02):243-252.
邵莉,陈继军,张宇琦等.基于Bayes时空模型分析HIV/AIDS晚发现的时空分布特征及其影响因素[J].中山大学学报(医学科学版),2024,45(02):243-252. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20240305.008.
SHAO Li,CHEN Jijun,ZHANG Yuqi,et al.Spatial-temporal Distribution and Influencing Factors of Late Diagnosis of HIV/AIDS Based on Bayes Spatial-temporal Model[J].Journal of Sun Yat-sen University(Medical Sciences),2024,45(02):243-252. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20240305.008.
目的
2
旨在分析兰州市HIV/AIDS晚发现的时空聚集性特征及相关影响因素,明确兰州市HIV/AIDS晚发现高风险地区和时间趋势,为兰州市因地制宜地制定HIV/AIDS防治策略措施提供参考依据。
方法
2
选择兰州市2011-2018年间新报告的成年HIV/AIDS病例作为研究对象,研究中所需的数据资料来自兰州市疾病预防控制中心和兰州市统计年鉴。采用Bayes时空模型分析HIV/AIDS晚发现相对风险(RR)的时空分布特征及其影响因素。
结果
2
2011-2018年间兰州市新报告的HIV/AIDS病例共计1 984例,其中HIV/AIDS晚发现者有982例(49.5%),平均年龄为39.67岁,男性占90.9%。老年人和女性HIV/AIDS病例中晚发现的比例更高;城关区(51.1%)、安宁区(50.3%)和榆中县(51.9%)具有高于平均水平的HIV/AIDS晚发现比例;2011-2018年间兰州市总体的晚发现比例呈波动上升趋势。Bayes时空模型分析结果显示,兰州市HIV/AIDS晚发现风险在2011-2015年间波动变化,而在2015年后迅速上升,其RR(95%CI)从1.01(0.84,1.23)上升到1.11(0.77,1.97);红古区和三个县的晚发现风险变化趋势与兰州市的总体变化趋势相似,而城关区和七里河区的晚发现风险呈下降趋势;晚发现相对风险大于1的区县包括:永登县(RR=1.07,95%CI:0.55,1.96)、西固区(RR=1.04,95%CI:0.67,1.49)、城关区(RR=2.41,95%CI:0.85,6.16)和七里河区(RR=2.03,95%CI:1.10,3.27)。冷热点分析结果显示城关区和七里河区为热点区。影响因素分析结果显示,随着人均GDP(RR=0.65,95%CI:0.35,0.90)和HIV/AIDS病例中的男性比例(RR=0.53,95%CI:0.19,0.92)的增高,HIV/AIDS晚发现的相对风险越低;而人口密度(RR=1.35,95%CI:1.01,1.81)越大,晚发现风险越高。
结论
2
兰州市的HIV/AIDS晚发现风险呈上升趋势,并且存在明显的地区差异特征;人均GDP、HIV/AIDS中男性比例和人口密度是HIV/AIDS晚发现的影响因素。因此,对于晚发现风险高和存在相关风险因素的区县,应重视并制定有针对性的HIV筛查和防治服务,降低HIV/AIDS晚发现比例和风险。
Objectives
2
To analyze the spatial and temporal clustering characteristics and related influencing factors of late diagnosis of HIV/AIDS in Lanzhou, to identify its high-risk areas and time trends in Lanzhou, and to provide a theoretical basis for developing targeted HIV/AIDS prevention and control strategies in Lanzhou.
Methods
2
The subjects of this study were adult HIV/AIDS cases reported in Lanzhou City between 2011 and 2018. Data used in the study were sourced from the Lanzhou Center for Disease Control and Prevention and the Lanzhou Statistical Yearbook. To analyze the spatial distribution characteristics and influencing factors of the relative risk (RR) of late HIV/AIDS diagnosis, Bayes spatial-temporal model was used.
Results
2
A total of 1984 new HIV/AIDS cases were reported in Lanzhou from 2011 to 2018, with an mean age of 37.51 years and predominantly male (91.8%). The number of late diagnosis cases was 982, with an mean age of 39.67 years and a predominance of males (91.8%). Late diagnosis was more common in older individuals and women with HIV/AIDS. Chengguan District (51.1%), Anning District (50.3%) and Yuzhong County (51.9%) had an above-average proportion of late diagnosis of HIV/AIDS. The proportion of late diagnosis cases in Lanzhou showed a fluctuating upward trend from 2011 to 2018. The results of Bayes spatial-temporal model showed that the risk of late HIV/AIDS diagnosis in Lanzhou had fluctuated from 2011 to 2015, and then increased rapidly after 2015 [RR
(95% credibility interval, 95%CI) increased from 1.01 (0.84, 1.23) to 1.11 (0.77, 1.97)]; the trends of risk of late diagnosis in Honggu district and three counties were similar to the overall trend in Lanzhou city, while the risk of late diagnosis in Chengguan District and Qilihe District showed a decreasing trend. The regions with the RR for late diagnosis greater than 1 included Yongdeng County (RR=1.07, 95% CI: 0.55, 1.96), Xigu District (RR=1.04, 95% CI: 0.67, 1.49), Chengguan District (RR=2.41, 95% CI: 0.85, 6.16), and Qilihe District (RR=2.03, 95% CI: 1.10, 3.27). Besides, the heatmap analysis showed that Chengguan District and Qilihe District were the hot spots. The influencing factors analysis showed that the higher GDP per capita (RR=0.65, 95% CI: 0.35, 0.90) and the larger proportion of males with HIV/AIDS cases (RR=0.53, 95% CI: 0.19, 0.92) could lead to the lower the relative risk of late HIV/AIDS diagnosis. However, the higher the population density (RR=1.35, 95% CI: 1.01, 1.81) caused the higher the risk of late diagnosis.
Conclusion
2
Our study shows the risk of late diagnosis of HIV/AIDS in Lanzhou was on the rise, and there are significant regional differences. GDP per capita, the proportion of males in HIV/AIDS cases and population density are influencing factors in the late diagnosis of HIV/AIDS. Therefore, for regions with a high risk of late diagnosis or related risk factors, targeted HIV screening and prevention services should be given priority in order to reduce the proportion and risk of late diagnosis of HIV/AIDS.
艾滋病人类免疫缺陷病毒晚发现Bayes时空模型分布特征
AIDSHIVlate diagnosisBayes spatial-temporal modeldistribution characteristics
杨尧, 李功权. 中国近年艾滋病空间分布及影响因素分析[J]. 中国艾滋病性病, 2018, 24(12): 1208-1211.
Yang X, Li GQ. Spatial distribution and influencing factors of AIDS in China in recent years [J]. Chin J Aids Std, 2018, 24(12): 1208-1211.
Lemoh C, Guy R, Yohannes K, et al. Delayed diagnosis of HIV infection in Victoria 1994 to 2006[J]. Sex Health, 2009, 6(2): 117-122.
李婉霞, 罗银弟, 刘旭明. 个体化延续护理对艾滋病患者生存质量的影响[J]. 皮肤病与性病, 2020, 42(3): 353-354.
Li WX, Luo YD, Liu XM, et, al. Effect of individualized continuous nursing on the quality of life of AIDS patients [J]. Dermatol Vene, 2020, 42(3): 353-354.
叶振淼, 王大勇, 赵丽娜, 等. 2015-2020年温州市新报告HIV/AIDS患者晚发现情况及影响因素分析[J]. 中国艾滋病性病, 2022, 28(5): 28.
Ye ZM, Wang DY, Zhao LN, et, al. Analysis of late diagnosis and influencing factors among newly reported HIV/AIDS cases in Wenzhou, 2015-2020 [J]. Chin J Aids Std, 2022, 28(5): 28.
金霞, 熊燃, 王丽艳, 等. 2010-2014年我国HIV感染病例的晚发现情况分析[J]. 中华流行病学杂志, 2016, 37(2): 4.
Jin X, Xiong R, Wang YL, et, al. Analysis of late diagnosis of HIV infection in China, 2010-2014 [J]. Chin J Epidemiol, 2016, 37(2): 4.
陈茜, 陈云钰, 于德娥. 海南省三亚市2010—2021年新报告HIV/AIDS晚发现情况及影响因素[J]. 中国热带医学, 2022, 22(9): 5.
Chen X, Chen YY, Yu DE. Influencing factors of late diagnosis of newly identified HIV/AIDS cases in Sanya Hainan, 2010-2021 [J]. Chin Trop Med, 2022, 22(9): 5.
张健稳, 宋鑫, 王甜甜, 等. 2021年青岛市新发现HIV感染者和艾滋病患者晚发现及治疗情况分析[J]. 中国预防医学杂志, 2023, 24(5): 478-481.
Zhang JW, Song X, Wang TT, et, al. Analysis of late-diagnosis and treatment of newly detected HIV/AIDS cases in Qingdao, 2021 [J]. Chin Prev Med, 2023, 24(5): 478-481.
韩孟杰, 金聪, 李敬云, 等. 扩大艾滋病检测促进早检测专家共识[J]. 中国艾滋病性病, 2021, 27(11): 1202-1206.
Han MJ, Jin C, Li JY, et, al. Expert consensus on expanding HIV testing and promoting early HIV testing [J]. Chin J Aids Std, 2021, 27(11): 1202-1206.
杨青松, 王文红. 农村空巢老人的孤独感与社会支持和应对方式的关系[J]. 中国健康教育, 2018, 34(10): 898-901.
Yang QS, Wang WH. Relationship of loneliness to social support and coping style among rural empty-nest elderly people [J]. Chin J Health Educ, 2018, 34(10): 898-901.
陈继军, 王宇红, 齐跃军, 等. 兰州市2011-2017年艾滋病病毒感染者和艾滋病患者流行现况分析[J]. 中国病毒病杂志, 2019, 9(2): 96-101.
Chen JJ, Wang YH, Qi YJ, et, al. Analysis of epidemics of HIV/AIDS from 2011 to 2017 in Lanzhou city of China[J]. Chin J Viral Dis, 2019, 9(2): 96-101.
徐馨兰, 于国伟, 李维德, 等. 兰州市2012-2017年HIV/AIDS疫情空间分布特征分析[J]. 中国卫生统计, 2020, 37(4): 501-504;+509.
Xu XL, Yu GW, Li WD, et, al. Spatial distribution characteristics and correlation of HIV /AIDS in Lanzhou from 2012 to 2017 [J]. Chin J Health Stat, 2020, 37(4): 501-504;+509.
岳青, 刘玉芬, 李健, 等. 2009—2017年医疗机构新报告HIV感染者和艾滋病患者晚发现情况分析[J]. 中华预防医学杂志, 2018, 52(12): 6.
Yu Q, Liu YF, Li J, et al. Analysis of late diagnosis of newly reported HIV/AIDS cases in medical institutions from 2009 to 2017 [J]. Chin J Prev Med, 2018, 52(12): 6.
Alexander N. Bayesian disease mapping: Hierarchical modeling in spatial epidemiology [J]. J R Stat Soc A Stat, 2011, 174(2): 512-513.
Besag J, York J, Mollie A. Bayesian image restoration, with two applications in spatial statistics[J]. Ann I Stat Math, 1991, 43(1): 1-20.
郑卫军, 李秀央, 陈坤. 空间流行病学研究中的贝叶斯统计方法[J]. 浙江大学学报:医学版, 2008, 37(6): 6.
Zheng WJ, Li XY, Chen K. Bayesian statistics in spatial epidemiology [J]. J Zhejiang Univ: Med Sci, 2008, 37(6): 6.
茆诗松. 贝叶斯统计[M]. 北京: 高等教育出版社, 1999: 2-29.
Mao SS. Bayesian statistics [M].Beijing: Higher Education Press, 1999: 2-29.
吴北平, 杨典, 王劲峰, 等. 利用贝叶斯时空模型分析山东省手足口病时空变化及影响因素[J]. 地球信息科学学报, 2016, 18(12): 8.
Wu BP, Yang D, Wang JF, et, al. Space-time variability and determinants of hand-foot-and-mouth disease in Shandong Province: a Bayesian spatio-temporal modeling approach [J]. J Geo-Inf Sci, 2016, 18(12): 8.
Ren NJ, Li YS, Wang RL, et al. The distribution of HIV and AIDS cases in Luzhou, China, from 2011 to 2020: a Bayesian spatiotemporal analysis [J]. Jmir Public Hlth Sur, 2022, 8(6): e37491.
Yang BR, Chan SK, Mohammad N, et al. Late HIV diagnosis in Houston/Harris County, Texas, 2000-2007 [J]. Aids Care, 2010, 22(6): 766-774.
汤后林, 毛宇嵘, 张铁军, 等. HIV感染者及艾滋病患者检测发现晚的原因调查分析[J]. 中华预防医学杂志, 2012, 46(11): 5.
Tang HL, Mao YR, Zhang TJ, et, al. Analysis of the causes of late diagnosis in HIV/AIDS patients [J]. Chin J Prev Med, 2012, 46(11): 5.
Cooney N, Hiransuthikul N, Lertmaharit S. HIV in young people: characteristics and predictors for late diagnosis of HIV [J]. Aids Care, 2015, 27(5): 561-569.
Aniley AB, Ayele TA, Zeleke EG, et al. Factors associated with late human immunodeficiency virus (HIV) diagnosis among peoples living with it, Northwest Ethiopia: hospital based unmatched case-control study [J]. Bmc Public Health, 2016, 16(1): 1076.
Ruadze E, Chkhartishvili N, Chokoshvili O, et al. Cascade of care among HIV patients diagnosed in 2013 in Georgia: Risk factors for late diagnosis and attrition from HIV care [J]. Sage Open Med , 2017, 5: 205031211773197.
施雅莹,余继熙,刘芳,等.成都市2010—2019年新报告HIV/AIDS病例晚发现的影响因素及晚发现病例的生存情况分析[J]. 现代预防医学,2022,49(12):2143-2148.
Shi YY,Yu JX,Liu F,et al. Analysis of factors influencing late detection of newly reported HIV/AIDS cases and survival of late detected cases in Chengdu from 2010 to 2019[J]. Modern Prevent Med, 2022,49(12):2143-2148.
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构