1.中山大学孙逸仙纪念医院全科医学科, 广东 广州 510120
2.中山大学孙逸仙纪念医院急诊科, 广东 广州 510120
张萌,第一作者,研究方向:脓毒症免疫和肿瘤免疫,E-mail: zhangm7@mail.sysu.edu.cn
纸质出版日期:2024-03-20,
收稿日期:2024-01-10,
录用日期:2024-03-03
扫 描 看 全 文
张萌,杨正飞.肠-肺微生物群在免疫系统构建和调节中的重要作用[J].中山大学学报(医学科学版),2024,45(02):171-179.
ZHANG Meng,YANG Zhengfei.The Significant Roles of Gut-lung Microbiota in Shaping and Regulating Immunity[J].Journal of Sun Yat-sen University(Medical Sciences),2024,45(02):171-179.
张萌,杨正飞.肠-肺微生物群在免疫系统构建和调节中的重要作用[J].中山大学学报(医学科学版),2024,45(02):171-179. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20240312.002.
ZHANG Meng,YANG Zhengfei.The Significant Roles of Gut-lung Microbiota in Shaping and Regulating Immunity[J].Journal of Sun Yat-sen University(Medical Sciences),2024,45(02):171-179. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20240312.002.
微生物与人体免疫系统的互动一直是生物医学研究的焦点。新一代测序发现不仅肠道,呼吸道也存在着微生物群,且肠-肺微生物群之间通过免疫细胞及其活性因子等形成了一个相互关联的网络。本综述旨在探讨肠道和肺部微生物群如何调节免疫应答,包括其在局部和全身免疫调节中的作用;同时,解析肠-肺轴之间的免疫联系,对深入理解微生物在免疫系统的作用及探索新的疾病诊疗策略具有重要临床意义。
The interaction between microbes and the human immune system has long been a focus in biomedical research. Next-generation sequencing has revealed that in addition to gut microbiota, the respiratory tract also harbors microbial communities, forming an interconnected network with the gut microbiota through immune cells and active factors. This review aims to explore how the gut and lung microbiota regulate immune responses, including their roles in local and systemic immune modulation. It also delineates the immunological connections along the gut-lung axis. Further elucidating the influence of microbes on the immune system holds important clinical significance for understanding diseases and exploring novel diagnostic and therapeutic strategies.
肠道微生物呼吸道微生物肠-肺轴免疫系统免疫应答
gut microbiotarespiratory microbiotagut-lung axisimmune systemimmune response
Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body[J]. PLoS Biol, 2016, 14(8): e1002533.
Stricker S, Hain T, Chao CM, et al. Respiratory and intestinal microbiota in pediatric lung diseases-current evidence of the gut-lung axis[J]. Int J Mol Sci, 2022, 23(12): 6791.
Hufnagl K, Pali-Schöll I, Roth-Walter F, et al. Dysbiosis of the gut and lung microbiome has a role in asthma[J]. Semin Immunopathol, 2020, 42(1): 75-93.
Wang L, Cai Y, Garssen J, et al. The bidirectional gut-lung axis in chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2023, 207(9): 1145-1160.
Invernizzi R, Molyneaux PL. The contribution of infection and the respiratory microbiome in acute exacerbations of idiopathic pulmonary fibrosis[J]. Eur Respir Rev, 2019, 28(152): 190045.
Sausset R, Petit MA, Gaboriau-Routhiau V, et al. New insights into intestinal phages[J]. Mucosal Immunol, 2020, 13(2): 205-215.
Thaiss CA, Zmora N, Levy M, et al. The microbiome and innate immunity[J]. Nature, 2016, 535(7610): 65-74.
Lazar V, Ditu LM, Pircalabioru GG, et al. Aspects of gut microbiota and immune system interactions in infectious diseases, immunopathology, and cancer[J]. Front Immunol, 2018, 9: 1830.
Bi Y, Tu Y, Zhang N, et al. Multiomics analysis reveals the presence of a microbiome in the gut of fetal lambs[J]. Gut, 2021, 70(5): 853-864.
Milani C, Duranti S, Bottacini F, et al. The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota[J]. Microbiol Mol Biol Rev, 2017, 81(4): e00036-17.
Shen X, Liu L, Peek RM, et al. Supplementation of p40, a Lactobacillus rhamnosus GG-derived protein, in early life promotes epidermal growth factor receptor-dependent intestinal development and long-term health outcomes[J]. Mucosal Immunol, 2018, 11(5): 1316-1328.
Ehrlich AM, Pacheco AR, Henrick BM, et al. Indole-3-lactic acid associated with Bifidobacterium-dominated microbiota significantly decreases inflammation in intestinal epithelial cells[J]. BMC Microbiol, 2020, 20(1): 357.
Selma-Royo M, Calatayud Arroyo M, García-Mantrana I, et al. Perinatal environment shapes microbiota colonization and infant growth: impact on host response and intestinal function[J]. Microbiome, 2020, 8(1): 167.
Price AE, Shamardani K, Lugo KA, et al. A map of toll-like receptor expression in the intestinal epithelium reveals distinct spatial, cell type-specific, and temporal patterns[J]. Immunity, 2018, 49(3): 560-575.e566.
Kim CH. Control of lymphocyte functions by gut microbiota-derived short-chain fatty acids[J]. Cell Mol Immunol, 2021, 18(5): 1161-1171.
Huang H, Huang J, Huang W, et al. Breast milk jaundice affects breastfeeding: from the perspective of intestinal flora and SCFAs-GPR41/43[J]. Front Nutr, 2023, 10: 1121213.
Ledala N, Malik M, Rezaul K, et al. Bacterial indole as a multifunctional regulator of klebsiella oxytoca complex enterotoxicity[J]. mBio, 2022, 13(1): e0375221.
Li XV, Leonardi I, Iliev ID. Gut mycobiota in immunity and inflammatory disease[J]. Immunity, 2019, 50(6): 1365-1379.
Speakman EA, Dambuza IM, Salazar F, et al. T cell antifungal immunity and the role of c-type lectin receptors[J]. Trends Immunol, 2020, 41(1): 61-76.
Thompson A, Davies LC, Liao CT, et al. The protective effect of inflammatory monocytes during systemic C. albicans infection is dependent on collaboration between C-type lectin-like receptors[J]. PLoS Pathog, 2019, 15(6): e1007850.
Wang T, Pan D, Zhou Z, et al. Dectin-3 deficiency promotes colitis development due to impaired antifungal innate immune responses in the gut[J]. PLoS Pathog, 2016, 12(6): e1005662.
Kirkland TN, Fierer J. Innate immune receptors and defense against primary pathogenic fungi[J]. Vaccines (Basel), 2020, 8(2): 303.
Liu L, Gong T, Tao W, et al. Commensal viruses maintain intestinal intraepithelial lymphocytes via noncanonical RIG-I signaling[J]. Nat Immunol, 2019, 20(12): 1681-1691.
Negi S, Pahari S, Bashir H, et al. Gut microbiota regulates mincle mediated activation of lung dendritic cells to protect against mycobacterium tuberculosis[J]. Front Immunol, 2019, 10: 1142.
Grainger J, Daw R, Wemyss K. Systemic instruction of cell-mediated immunity by the intestinal microbiome[J]. F1000Res, 2018, 7: F1000 Faculty Rev-1910.
Hou K, Wu ZX, Chen XY, et al. Microbiota in health and diseases[J]. Signal Transduct Target Ther, 2022, 7(1): 135.
Dang AT, Marsland BJ. Microbes, metabolites, and the gut-lung axis[J]. Mucosal Immunol, 2019, 12(4): 843-850.
Trompette A, Gollwitzer ES, Pattaroni C, et al. Dietary fiber confers protection against flu by shaping ly6c(-) patrolling monocyte hematopoiesis and CD8(+) t cell metabolism[J]. Immunity, 2018, 48(5): 992-1005.e1008.
何明月, 张巍. 阿尔茨海默病中肠道微生物群与血脑屏障关系研究进展[J]. 中国神经精神疾病杂志, 2023, 49(3): 179-184.
He MY, Zhang W. Progress in relationship between gut microbiota and blood-brain barrier in Alzheimer disease[J]. Chin J Nerv Ment Dis, 2023, 49(3): 179-184.
Reed MD, Yim YS, Wimmer RD, et al. IL-17a promotes sociability in mouse models of neurodevelopmental disorders[J]. Nature, 2020, 577(7789): 249-253.
Nakamoto N, Sasaki N, Aoki R, et al. Gut pathobionts underlie intestinal barrier dysfunction and liver T helper 17 cell immune response in primary sclerosing cholangitis[J]. Nat Microbiol, 2019, 4(3): 492-503.
Mccoy KD, Burkhard R, Geuking MB. The microbiome and immune memory formation[J]. Immunol Cell Biol, 2019, 97(7): 625-635.
Fakhim H, Vaezi A, Dannaoui E, et al. Comparative virulence of Candida auris with Candida haemulonii, Candida glabrata and Candida albicans in a murine model[J]. Mycoses, 2018, 61(6): 377-382.
Abbas AA, Taylor LJ, Dothard MI, et al. Redondoviridae, a family of small, circular dna viruses of the human oro-respiratory tract associated with periodontitis and critical illness[J]. Cell Host Microbe, 2019, 25(5): 719-729.e714.
Barcik W, Boutin RCT, Sokolowska M, et al. The role of lung and gut microbiota in the pathology of asthma[J]. Immunity, 2020, 52(2): 241-255.
李四菊, 张倩, 冷云, 等. 宏基因组联合UPLC-Q-TOF-MS/MS探讨地塞米松对大鼠肺炎的作用机制[J]. 中山大学学报(医学科学版), 2023, 44(2): 232-243.
Li SJ, Zhang Q, Leng Y, et al. Macro-genomics combined with UPLC-Q-TOF-MS/MS elucidates the mechanism of dexamethasone in the treatment of pneumonia in rats[J]. J Sun Yat-sen Univ (Med Sci), 2023, 44(2): 232-243.
Maurice NM, Bedi B, Sadikot RT. Pseudomonas aeruginosa biofilms: host response and clinical implications in lung infections[J]. Am J Respir Cell Mol Biol, 2018, 58(4): 428-439.
Allard B, Panariti A, Martin JG. Alveolar macrophages in the resolution of inflammation, tissue repair, and tolerance to infection[J]. Front Immunol, 2018, 9: 1777.
Huynh M, Crane MJ, Jamieson AM. The lung, the niche, and the microbe: exploring the lung microbiome in cancer and immunity[J]. Front Immunol, 2022, 13: 1094110.
Li D, Wu M. Pattern recognition receptors in health and diseases[J]. Signal Transduct Target Ther, 2021, 6(1): 291.
Lea SR, Reynolds SL, Kaur M, et al. The effects of repeated Toll-like receptors 2 and 4 stimulation in COPD alveolar macrophages[J]. Int J Chron Obstruct Pulmon Dis, 2018, 13: 771-780.
Whiteside SA, Mcginniss JE, Collman RG. The lung microbiome: progress and promise[J]. J Clin Invest, 2021, 131(15): e150473.
Allie SR, Bradley JE, Mudunuru U, et al. The establishment of resident memory B cells in the lung requires local antigen encounter[J]. Nat Immunol, 2019, 20(1): 97-108.
Leshem A, Liwinski T, Elinav E. Immune-microbiota interplay and colonization resistance in infection[J]. Mol Cell, 2020, 78(4): 597-613.
Ahmad S, Wang B, Walker MD, et al. An interbacterial toxin inhibits target cell growth by synthesizing (p)ppApp[J]. Nature, 2019, 575(7784): 674-678.
Hosang L, Canals RC, Van Der Flier FJ, et al. The lung microbiome regulates brain autoimmunity[J]. Nature, 2022, 603(7899): 138-144.
Zhang W, Lyu M, Bessman NJ, et al. Gut-innervating nociceptors regulate the intestinal microbiota to promote tissue protection[J]. Cell, 2022, 185(22): 4170-4189. e4120.
Tulic MK, Piche T, Verhasselt V. Lung-gut cross-talk: evidence, mechanisms and implications for the mucosal inflammatory diseases[J]. Clin Exp Allergy, 2016, 46(4): 519-528.
Bradley CP, Teng F, Felix KM, et al. Segmented filamentous bacteria provoke lung autoimmunity by inducing gut-lung axis Th17 cells expressing dual TCRs[J]. Cell Host Microbe, 2017, 22(5): 697-704. e694.
Dzidic M, Abrahamsson TR, Artacho A, et al. Aberrant IgA responses to the gut microbiota during infancy precede asthma and allergy development[J]. J Allergy Clin Immunol, 2017, 139(3): 1017-1025. e1014.
Melo-González F, Sepúlveda-Alfaro J, Schultz BM, et al. Distal consequences of mucosal infections in intestinal and lung inflammation[J]. Front Immunol, 2022, 13: 877533.
Pérez-Cobas AE, Rodríguez-Beltrán J, Baquero F, et al. Ecology of the respiratory tract microbiome[J]. Trends Microbiol, 2023, 31(9): 972-984.
Zhao Y, Chen F, Wu W, et al. GPR43 mediates microbiota metabolite SCFA regulation of antimicrobial peptide expression in intestinal epithelial cells via activation of mTOR and STAT3[J]. Mucosal Immunol, 2018, 11(3): 752-762.
Schulthess J, Pandey S, Capitani M, et al. The short chain fatty acid butyrate imprints an antimicrobial program in macrophages[J]. Immunity, 2019, 50(2): 432-445. e437.
Rutting S, Xenaki D, Malouf M, et al. Short-chain fatty acids increase TNFα-induced inflammation in primary human lung mesenchymal cells through the activation of p38 MAPK[J]. Am J Physiol Lung Cell Mol Physiol, 2019, 316(1): L157-l174.
Liu Q, Tian X, Maruyama D, et al. Lung immune tone via gut-lung axis: gut-derived LPS and short-chain fatty acids' immunometabolic regulation of lung IL-1β, FFAR2, and FFAR3 expression[J]. Am J Physiol Lung Cell Mol Physiol, 2021, 321(1): L65-L78.
Jacobs MC, Lankelma JM, Wolff NS, et al. Effect of antibiotic gut microbiota disruption on LPS-induced acute lung inflammation[J]. PLoS One, 2020, 15(11): e0241748.
De Vos WM, Tilg H, Van Hul M, et al. Gut microbiome and health: mechanistic insights[J]. Gut, 2022, 71(5): 1020-1032.
Liu C, Yang L, Han Y, et al. Mast cells participate in regulation of lung-gut axis during Staphylococcus aureus pneumonia[J]. Cell Prolif, 2019, 52(2): e12565.
Groves HT, Higham SL, Moffatt MF, et al. Respiratory viral infection alters the gut microbiota by inducing inappetence[J]. mBio, 2020, 11(1): e03236-19.
0
浏览量
14
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构