1.中山大学中山眼科中心眼科学国家重点实验室,广东 广州510060
2.暨南大学附属深圳爱尔眼科医院,广东 深圳518051
陈烁烁,第一作者,研究方向:近视,E-mail: chenshuoshuocss@163.com
纸质出版日期:2024-05-20,
收稿日期:2024-01-11,
录用日期:2024-03-29
扫 描 看 全 文
陈烁烁,杨正菲,黎紫璇等.新PCI生物测量仪的重复性、再现性和一致性[J].中山大学学报(医学科学版),2024,45(03):484-492.
CHEN Shuoshuo,YANG Zhengfei,LI Zixuan,et al.Repeatability and Reproducibility of a New Ocular Biometer Based on Partial Coherence Interferometry and Its Agreement with IOL Master 500[J].Journal of Sun Yat-sen University(Medical Sciences),2024,45(03):484-492.
陈烁烁,杨正菲,黎紫璇等.新PCI生物测量仪的重复性、再现性和一致性[J].中山大学学报(医学科学版),2024,45(03):484-492. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20240419.005.
CHEN Shuoshuo,YANG Zhengfei,LI Zixuan,et al.Repeatability and Reproducibility of a New Ocular Biometer Based on Partial Coherence Interferometry and Its Agreement with IOL Master 500[J].Journal of Sun Yat-sen University(Medical Sciences),2024,45(03):484-492. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20240419.005.
目的
2
评估基于部分相干干涉测量原理的新型眼生物测量仪Myopia Master用于测量眼轴、角膜曲率的重复性和再现性,比较其与IOL Master 500的一致性。
方法
2
同一名操作者随机先后顺序使用新型眼球生物测量仪Myopia Master和IOL Master 500采集屈光不正儿童右眼数据,以评估两仪器间一致性。其中部分儿童接受了Myopia Master重复性、再现性评估。数据包括眼轴(AL)、平坦角膜曲率(Kf)、陡峭角膜曲率(Ks)、平均角膜曲率(Km)、J
0
、J
45
。
结果
2
136人纳入一致性研究,其中58人纳入重复性和再现性研究。Myopia Master在AL测量中显示出高重复性、再现性(重复性Sw=0.02 mm, ICC=0.999;再现性Sw=0.04 mm, ICC=0.998),在角膜曲率测量显示中等的重复性[Sw范围:(0.04~0.12) D,ICC:(0.861~0.991)]和再现性[Sw范围:(0.06~0.20)D,ICC范围:(0.835~0.992)]。Myopia Master与IOL Master 500测量平均差异为AL(-0.01±0.04)mm、Kf(-0.09±0.15)D、Ks(-0.47±0.40)D、Km(-0.28±0.23)D、 J
0
(0.18±0.20)D和J
45
(-0.01±0.12)D。
结论
2
在儿童近视筛查中AL和角膜曲率测量中显示出高重复性和再现性,但临床上AL和角膜曲率在Myopia Master和IOL Master 500之间不可互换使用。
Objective
2
To assess the repeatability (intra-operator variability) and reproducibility (inter-operator variability) of a new partial coherence interferometry (PCI)-based ocular biometer, Myopia Master, and its agreement with IOL Master 500 for measuring axial length (AL) and corneal curvature (K) in children aged 8-12 years.
Methods
2
The same operator measured school children with the Myopia Master and the IOL Master 500 in random order to assess agreement. Additionally, some of these children received measurements from another operator using the Myopia Master to assess
repeatability and reproducibility. AL, flat keratometry (Kf), steep keratometry (Ks), mean keratometry (Km), J
0
and J
45
were analyzed. The repeatability and reproducibility were assessed by the within-subject standard deviation (Sw), test-retest repeatability (TRT), coefficient of variation (CoV) and intra-class correlation coefficient (ICC). The agreement between the Myopia Master and the IOL Master 500 was assessed by Bland-Altman plots and 95% limits of agreement (LoA).
Results
2
Both repeatability and reproducibility of the Myopia Master were high for AL measurements (Sw=0.02 mm, ICC=0.999; Sw=0.04 mm, ICC=0.998), but moderate for K measurements (Sw range, 0.04 to 0.12 D, ICC range, 0.861 to 0.991; Sw range, 0.06 to 0.20 D, ICC range, 0.835 to 0.992). There were significant mean differences between the Myopia Master and the IOL Master 500 in measurements of AL (-0.01±0.04) mm, Kf (-0.09 ± 0.15) D, Ks (-0.47±0.40) D, and Km (-0.28±0.23) D, J
0
(0.18±0.20) D and J
45
(-0.01±0.12) D.
Conclusions
2
The Myopia Master provided high repeatability and reproducibility for AL measurements in schoolchildren with myopia, but the Myopia Master and the IOL Master 500 cannot be used interchangeably in measuring AL and K.
部分相干干涉眼轴长度角膜曲率重复性再现性一致性
partial coherence interferometry the (PCI)axial length(AL)corneal curvature (K)repeatabilityreproducibilityagreement
Pan CW, Dirani M, Cheng CY, et al. The age-specific prevalence of myopia in asia: a meta-analysis[J]. Optom Vis Sci, 2015, 92(3): 258-266.
Rudnicka AR, Kapetanakis VV, Wathern AK, et al. Global variations and time trends in the prevalence of childhood myopia, a systematic review and quantitative meta-analysis: implications for aetiology and early prevention[J]. Br J Ophthalmol, 2016, 100(7): 882-890.
Fricke TR, Jong M, Naidoo KS, et al. Global prevalence of visual impairment associated with myopic macular degeneration and temporal trends from 2000 through 2050: systematic review, meta-analysis and modelling[J]. Br J Ophthalmol, 2018, 102(7): 855-862.
Wang H, Li Y, Qiu K, et al. Prevalence of myopia and uncorrected myopia among 721 032 schoolchildren in a city-wide vision screening in southern China: the Shantou Myopia Study[J]. Br J Ophthalmol, 2023, 107(12): 1798-1805.
Flitcroft D I. The complex interactions of retinal, optical and environmental factors in myopia aetiology[J]. Prog Retin Eye Res, 2012, 31(6): 622-660.
Saw S, Gazzard G, Shih‐Yen EC, et al. Myopia and associated pathological complications[J]. Ophthalmic Physiol Opt, 2005, 25(5): 381-391.
Wong TY, Ferreira A, Hughes R, et al. Epidemiology and disease burden of pathologic myopia and myopic choroidal neovascularization: an evidence-based systematic review[J]. Am J Ophthalmol, 2014, 157(1): 9-25. e12.
沙玛丽·哈力木别克, 王静, 易湘龙. 近视疾病经济负担研究进展[J]. 眼科学报, 2023, 38(10): 700-707.
Shamali H, Wang J, Yi XL. Research progress on the economic burden of myopia[J]. Eye Sci, 2023, 38(10): 700-707.
Zadnik K, Sinnott LT, Cotter SA, et al. Prediction of juvenile-onset myopia[J]. JAMA Ophthalmol, 2015, 133(6): 683.
He X, Sankaridurg P, Naduvilath T, et al. Normative data and percentile curves for axial length and axial length/corneal curvature in Chinese children and adolescents aged 4-18 years[J]. Br J Ophthalmol, 2021: bjophthalmol-2021-319431.
Wolffsohn JS, Kollbaum PS, Berntsen DA, et al. IMI - clinical myopia control trials and instrumentation report[J]. Investig Ophthalmol Visual Sci, 2019, 60(3): M132-M160.
薛庆, 张俊兰. 不同屈光状态的青少年眼球生物学参数观察[J]. 广东医学, 2022, 43(5): 622-625.
Xue Q, Zhang JL. The observation of ocular biometry for adolescent in different refractive states[J]. Guangdong Med J, 2022, 43(5): 622-625.
吴雨璇, 林卓玲, 吴晓航, 等. 光学眼科生物测量仪StarEyes 900与IOLMaster 500对眼球生物学测量的一致性评价[J]. 眼科学报, 2022, 37(2): 125-130.
Wu YX, Lin ZL, Wu XH, et al. Consistency evaluation of eyeball biological measurements using StarEyes 900 andlOLMaster 500[J]. Eye Sci, 2022, 37(2): 125-130.
Bell NP, Feldman RM, Zou Y, et al. New technology for examining the anterior segment by ultrasonic biomicroscopy[J]. J Catar Refract Surg, 2008, 34(1): 121-125.
Kaswin G, Rousseau A, Mgarrech M, et al. Biometry and intraocular lens power calculation results with a new optical biometry device: comparison with the gold standard[J]. J Catar Refract Surg, 2014, 40(4): 593-600.
Chen YA, Hirnschall N, Findl O. Evaluation of 2 new optical biometry devices and comparison with the current gold standard biometer[J]. J Catar Refract Surg, 2011, 37(3): 513-517.
Pedersen HR, Svarverud E, Hagen LA, et al. Comparing ocular biometry and autorefraction measurements from the Myopia Master with the IOLMASTER 700 and the Huvitz HRK‐8000A autorefractor[J]. Ophthalmic Physiol Opt, 2023, 43(3): 410-417.
Ye Y, Zhao Y, Han T, et al. Accuracy of axial length, keratometry, and refractive measurement with Myopia Master in children with ametropia[J]. BMC Ophthalmol, 2022, 22(1): 468.
Hessler P, Künzel P, Degle S. Comparison of three different devices for the evaluation of axial length, refractive error, and keratometry[J]. Optom Vis Sci, 2023, 100(8): 557-563.
Hu Y, Zhao F, Ding X, et al. Rates of myopia development in young chinese schoolchildren during the outbreak of COVID-19[J]. JAMA ophthalmol, 2021, 139(10): 1115-1121.
Ortiz A, Galvis V, Tello A, et al. Comparison of three optical biometers: IOLMaster 500, Lenstar LS 900 and Aladdin[J]. Intern Ophthalmol, 2019, 39(8): 1809-1818.
Song JS, Yoon DY, Hyon JY, et al. Comparison of ocular biometry and refractive outcomes using IOL Master 500, IOL Master 700, and Lenstar LS900[J]. Korean J Ophthalmol, 2020, 34(2): 126-132.
Bartlett J W, Frost C. Reliability, repeatability and reproducibility: analysis of measurement errors in continuous variables[J]. Ultrasound Obstet Gynecol, 2008, 31(4): 466-475.
Yu AY, Ye J, Savini G, et al. Reliability and agreement of the central and mid-peripheral corneal thickness measured by a new Scheimpflug based imaging[J]. Ann Transl Med, 2021, 9(14): 1136-1136.
Faul F, Erdfelder E, Buchner A, et al. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses[J]. Behav Res Methods, 2009, 41(4): 1149-1160.
Garcia Ardoy E, Mateos N, Roda L, et al. Repeatability and agreement of swept-source optical coherence tomography and partial coherence interferometry biometers in myopes[J]. Clin Experim Optom, 2023, 106(7): 783-792.
Považay B, Hermann B, Unterhuber A, et al. Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients[J]. J Biomed Optics, 2007, 12(4): 041211.
McAlinden C, Gao R, Yu A, et al. Repeatability and agreement of ocular biometry measurements: aladdin versus lenstar[J]. Br J Ophthalmol, 2017, 101(9): 1223-1229.
Huang J, Chen H, Li Y, et al. Comprehensive comparison of axial length measurement with three swept-source OCT-based biometers and partial coherence interferometry[J]. J Refract Surg, 2019, 35(2): 115-120.
Chamarty S, Verkicharla PK. Accuracy and precision of new optical biometer designed for myopia management in measurement of ocular biometry[J]. Optom Vis Sci, 2023, 100(11): 745-750.
Epitropoulos AT, Matossian C, Berdy GJ, et al. Effect of tear osmolarity on repeatability of keratometry for cataract surgery planning[J]. J Cataract Refract Surg, 2015, 41: 6.
Hiraoka T, Asano H, Ogami T, et al. Influence of dry eye disease on the measurement repeatability of corneal curvature radius and axial length in patients with cataract[J]. J Clin Med, 2022, 11(3): 710.
Brennan NA, Toubouti YM, Cheng X, et al. Efficacy in myopia control[J]. Prog Retinal Eye Res, 2021, 83: 100923.
Liu S, He X, Wang J, et al. Association between axial length elongation and spherical equivalent progression in Chinese children and adolescents[J]. Ophthal Physiol Optics, 2022, 42(5): 1133-1140.
Ostrin LA, Jnawali A, Carkeet A, et al. Twenty‐four hour ocular and systemic diurnal rhythms in children[J]. Ophthal Physiol Optics, 2019, 39(5): 358-369.
0
浏览量
22
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构