1.遵义医科大学附属医院神经内科,贵州 遵义 563000
2.遵义医科大学研究生院,贵州 遵义 563000
余婷,第一作者,研究方向:认知障碍,E-mail: yuting0512@163.com
纸质出版日期:2024-05-20,
收稿日期:2024-03-26,
录用日期:2024-05-13
扫 描 看 全 文
余婷,刘海军.O连接N-乙酰葡萄糖胺糖基化修饰在神经退行性疾病中的研究进展[J].中山大学学报(医学科学版),2024,45(03):370-376.
YU Ting,LIU Haijun.Research Progress on O-GLcNAc Glycosylation Modification in Neurodegenerative Diseases[J].Journal of Sun Yat-sen University(Medical Sciences),2024,45(03):370-376.
余婷,刘海军.O连接N-乙酰葡萄糖胺糖基化修饰在神经退行性疾病中的研究进展[J].中山大学学报(医学科学版),2024,45(03):370-376. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20240515.002.
YU Ting,LIU Haijun.Research Progress on O-GLcNAc Glycosylation Modification in Neurodegenerative Diseases[J].Journal of Sun Yat-sen University(Medical Sciences),2024,45(03):370-376. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20240515.002.
O连接N-乙酰葡萄糖胺(O-GlcNAc)糖基化是一种由O-键连接的乙酰氨基葡萄糖和胞内蛋白上的丝氨酸/苏氨酸残基形成的蛋白质翻译后修饰。O-GlcNAc糖基化修饰在脑内普遍存在,其与转录、翻译和蛋白稳态等关系密切。O-GlcNAc糖基化修饰参与多种神经系统变性疾病的发生发展,但其调控机制尚不清楚。现就O-GlcNAc糖基化修饰与神经系统退行性病变的关系作一综述。
O-linked N-acetylglucosamine glycosylation (O-GlcNAcylation) is a protein post- translational protein formed by O-linked acetylglucosamine and serine/threonine residues on intracellular proteins. O-GlcNAc glycosylation modification is ubiquitous in the brain and is closely related to transcription, translation and protein homeostasis. O-GlcNAc glycosylation modification is involved in the occurrence and development of various neurological degenerative diseases, but its regulatory mechanism remains unclear. This paper reviews the relationship between O-GlcNAc glycosylation modification and neurological degenerative diseases.
O连接N-乙酰葡萄糖胺糖基化神经退行性变O连接N-乙酰葡萄糖胺糖基转移酶O连接N-乙酰葡萄糖胺糖苷酶糖基化修饰
O-GlcNAc glycosylationneurodegenerationOGTOGAglycosylation modification
Smith BAH, Bertozzi CR. The clinical impact of glycobiology: targeting selectins, siglecs and mammalian glycans[J]. Nat Rev Drug Discov, 2021, 20(3): 217-243.
Schjoldager KT, Narimatsu Y, Joshi HJ, et al. Global view of human protein glycosylation pathways and functions[J]. Nat Rev Mol Cell Biol, 2020, 21(12): 729-749.
Ma J, Hou C, Wu C. Demystifying the O-GlcNAc code: a systems view[J]. Chem Rev, 2022, 122(20): 15822-15864.
Wulff-Fuentes E, Berendt RR, Massman L, et al. The human O-GlcNAcome database and meta-analysis[J]. Sci Data, 2021, 8(1): 25.
Lee BE, Suh PG, Kim JI. O-GlcNAcylation in health and neurodegenerative diseases[J]. Exp Mol Med, 2021, 53(11): 1674-1682.
Torres CR, Hart GW. Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. evidence for O-linked GlcNAc[J]. J Biol Chem, 1984, 259(5): 3308-3317.
Hart GW. Nutrient regulation of signaling and transcription[J]. J Biol Chem, 2019, 294(7): 2211-2231.
Zhu Q, Cheng X, Cheng Y, et al. O-GlcNAcylation regulates the methionine cycle to promote pluripotency of stem cells[J]. Proc Natl Acad Sci U S A, 2020, 117(14): 7755-7763.
Marotta NP, Lin YH, Lewis YE, et al. O-GlcNAc modification blocks the aggregation and toxicity of the protein α-synuclein associated with Parkinson's disease[J]. Nat Chem, 2015, 7(11): 913-920.
Kim C, Nam DW, Park SY, et al. O-linked β-N-acetylglucosaminidase inhibitor attenuates β-amyloid plaque and rescues memory impairment[J]. Neurobiol Aging, 2013, 34(1): 275-285.
Lima VV, Giachini FR, Matsumoto T, et al. High-fat diet increases O-GlcNAc levels in cerebral arteries: a link to vascular dysfunction associated with hyperlipidaemia/obesity?[J]. Clin Sci (Lond), 2016, 130(11): 871-880.
Hardivillé S, Hart GW. Nutrient regulation of gene expression by O-GlcNAcylation of chromatin[J]. Curr Opin Chem Biol, 2016, 33: 88-94.
Lazarus MB, Nam Y, Jiang J, et al. Structure of human O-GlcNAc transferase and its complex with a peptide substrate[J]. Nature, 2011, 469(7331): 564-567.
Liu L, Li L, Ma C, et al. O-GlcNAcylation of Thr(12)/Ser(56) in short-form O-GlcNAc transferase (sOGT) regulates its substrate selectivity[J]. J Biol Chem, 2019, 294(45): 16620-16633.
Aman Y, Schmauck-Medina T, Hansen M, et al. Autophagy in healthy aging and disease[J]. Nat Aging, 2021, 1(8): 634-650.
Yokoe S, Hayashi T, Nakagawa T, et al. Augmented O-GlcNAcylation exacerbates right ventricular dysfunction and remodeling via enhancement of hypertrophy, mitophagy, and fibrosis in mice exposed to long-term intermittent hypoxia[J]. Hypertens Res, 2023, 46(3): 667-678.
Chatham JC, Zhang J, Wende AR. Role of O-Linked N-Acetylglucosamine protein modification in cellular (Patho)physiology[J]. Physiol Rev, 2021, 101(2): 427-493.
Zhang Q, Na Q, Song W. Moderate mammalian target of rapamycin inhibition induces autophagy in HTR8/SVneo cells via O-linked β-N-acetylglucosamine signaling[J]. J Obstet Gynaecol Res, 2017, 43(10): 1585-1596.
Wang P, Hanover JA. Nutrient-driven O-GlcNAc cycling influences autophagic flux and neurodegenerative proteotoxicity[J]. Autophagy, 2013, 9(4): 604-606.
Marsh SA, Powell PC, Dell'italia L J, et al. Cardiac O-GlcNAcylation blunts autophagic signaling in the diabetic heart[J]. Life Sci, 2013, 92(11): 648-656.
Hu J, Chen R, Jia P, et al. Augmented O-GlcNAc signaling via glucosamine attenuates oxidative stress and apoptosis following contrast-induced acute kidney injury in rats[J]. Free Radic Biol Med, 2017, 103: 121-132.
Xuefei Y, Dongyan L, Tianming L, et al. O-linked N-acetylglucosamine affects mitochondrial homeostasis by regulating Parkin-dependent mitophagy in hyperoxia-injured alveolar type II cells injury[J]. Respir Res, 2023, 24(1): 16.
Luo R, Li G, Zhang W, et al. O-GlcNAc transferase regulates intervertebral disc degeneration by targeting FAM134B-mediated ER-phagy[J]. Exp Mol Med, 2022, 54(9): 1472-1485.
Huynh VN, Benavides GA, Johnson MS, et al. Acute inhibition of OGA sex-dependently alters the networks associated with bioenergetics, autophagy, and neurodegeneration[J]. Mol Brain, 2022, 15(1): 22.
Xu TH, Sheng Z, Li Y, et al. OGT knockdown counteracts high phosphate-induced vascular calcification in chronic kidney disease through autophagy activation by downregulating YAP[J]. Life Sci, 2020, 261: 118121.
Breijyeh Z, Karaman R. Comprehensive Review on Alzheimer's Disease: Causes and Treatment[J]. Molecules, 2020, 25(24): 5789.
Pleen J, Townley R. Alzheimer's disease clinical trial update 2019-2021[J]. J Neurol, 2022, 269(2): 1038-1051.
Kim J, Jeong M, Stiles WR, et al. Neuroimaging modalities in Alzheimer's disease: diagnosis and clinical features[J]. Int J Mol Sci, 2022, 23(11): 6079.
Butterfield DA, Halliwell B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease[J]. Nat Rev Neurosci, 2019, 20(3): 148-160.
Liu X, Chiu JC. Nutrient-sensitive protein O-GlcNAcylation shapes daily biological rhythms[J]. Open Biol, 2022, 12(9): 220215.
Balana AT, Pratt MR. Mechanistic roles for altered O-GlcNAcylation in neurodegenerative disorders[J]. Biochem J, 2021, 478(14): 2733-2758.
Permanne B, Sand A, Ousson S, et al. O-GlcNAcase inhibitor ASN90 is a multimodal drug candidate for Tau and α-Synuclein proteinopathies[J]. ACS Chem Neurosci, 2022, 13(8): 1296-1314.
Wheatley EG, Albarran E, White CW, 3rd, et al. Neuronal O-GlcNAcylation improves cognitive function in the aged mouse brain[J]. Curr Biol, 2019, 29(20): 3359-3369.e4.
Wang Z, Li X, Spasojevic I, et al. Increasing O-GlcNAcylation is neuroprotective in young and aged brains after ischemic stroke[J]. Exp Neurol, 2021, 339: 113646.
Park J, Ha HJ, Chung ES, et al. O-GlcNAcylation ameliorates the pathological manifestations of Alzheimer's disease by inhibiting necroptosis[J]. Sci Adv, 2021, 7(3): eabd3207.
Bloem BR, Okun MS, Klein C. Parkinson's disease[J]. Lancet, 2021, 397(10291): 2284-2303.
Henderson MX, Trojanowski JQ, Lee VM. α-Synuclein pathology in Parkinson's disease and related α-synucleinopathies[J]. Neurosci Lett, 2019, 709: 134316.
Lai Y, Zhao C, Tian Z, et al. Neutral lysophosphatidylcholine mediates α-synuclein-induced synaptic vesicle clustering[J]. Proc Natl Acad Sci U S A, 2023, 120(44): e2310174120.
Zhang J, Li X, Li J D. The roles of post-translational modifications on α-Synuclein in the pathogenesis of Parkinson's diseases[J]. Front Neurosci, 2019, 13: 381.
Levine PM, Galesic A, Balana AT, et al. α-Synuclein O-GlcNAcylation alters aggregation and toxicity, revealing certain residues as potential inhibitors of Parkinson's disease[J]. Proc Natl Acad Sci U S A, 2019, 116(5): 1511-1519.
Lee BE, Kim HY, Kim HJ, et al. O-GlcNAcylation regulates dopamine neuron function, survival and degeneration in Parkinson disease[J]. Brain, 2020, 143(12): 3699-3716.
Balana AT, Mahul-Mellier AL, Nguyen BA, et al. O-GlcNAc forces an α-synuclein amyloid strain with notably diminished seeding and pathology[J]. Nat Chem Biol, 2024,20(5): 646-655.
O'reilly D, Belgrad J, Ferguson C, et al. Di-valent siRNA-mediated silencing of MSH3 blocks somatic repeat expansion in mouse models of Huntington's disease[J]. Mol Ther, 2023, 31(6): 1661-1674.
Medina A, Mahjoub Y, Shaver L, et al. Prevalence and incidence of Huntington's Disease: an updated systematic review and meta-analysis[J]. Mov Disord, 2022, 37(12): 2327-2335.
Kumar A, Singh PK, Parihar R, et al. Decreased O-linked GlcNAcylation protects from cytotoxicity mediated by huntingtin exon1 protein fragment[J]. J Biol Chem, 2014, 289(19): 13543-13553.
Gasset-Rosa F, Chillon-Marinas C, Goginashvili A, et al. Polyglutamine-expanded Huntingtin exacerbates age-related disruption of nuclear integrity and nucleocytoplasmic transport[J]. Neuron, 2017, 94(1): 48-57.e4.
Grima JC, Daigle JG, Arbez N, et al. Mutant Huntingtin disrupts the nuclear pore complex[J]. Neuron, 2017, 94(1): 93-107.e6.
Zhu Y, Liu TW, Madden Z, et al. Post-translational O-GlcNAcylation is essential for nuclear pore integrity and maintenance of the pore selectivity filter[J]. J Mol Cell Biol, 2016, 8(1): 2-16.
Masrori P, Van Damme P. Amyotrophic lateral sclerosis: a clinical review[J]. Eur J Neurol, 2020, 27(10): 1918-1929.
Shan X, Vocadlo DJ, Krieger C. Reduced protein O-glycosylation in the nervous system of the mutant SOD1 transgenic mouse model of amyotrophic lateral sclerosis[J]. Neurosci Lett, 2012, 516(2): 296-301.
Mejzini R, Flynn LL, Pitout IL, et al. ALS Genetics, mechanisms, and therapeutics: Where are we now?[J]. Front Neurosci, 2019, 13: 1310.
Chen YI, Wei PC, Hsu JL, et al. NPGPx (GPx7): a novel oxidative stress sensor/transmitter with multiple roles in redox homeostasis[J]. Am J Transl Res, 2016, 8(4): 1626-1640.
Zhao MJ, Yao X, Wei P, et al. O-GlcNAcylation of TDP-43 suppresses proteinopathies and promotes TDP-43's mRNA splicing activity[J]. EMBO Rep, 2021, 22(6): e51649.
李怡心, 游艳, 周杨, 等. MK8719激活STAT6并促进抗炎型小胶质细胞活化在缺血性脑损伤大鼠中发挥保护作用的研究[J/OL]. 重庆医科大学学报, 2024(4):1-6[2024-05-08].
Li YX, You Y, Zhou C, et al. MK8719 can alleviate cerebral ischemic injury in rats through STAT6 activating anti-inflammatory microglia[J/OL]. J Chongqing Med Univ, 2024(4):1-6[2024-05-08].
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构