1.广州医科大学药学院药理学教研室 // 广州医科大学分子靶标与临床药理学重点实验室,广东 广州 511436
2.广州医科大学附属第五医院,广东 广州 510799
3.广州卫生职业技术学院生理教研室, 广东 广州 510450
袁勋,第一作者,研究方向:心血管药理学,E-mail: xunyuan@gzhmu.edu.cn
班莉,共同第一作者,研究方向:临床药理学,E-mail: 284868681@qq.com;侯宁,通信作者,教授,研究方向:心血管疾病发病机制与治疗,E-mail: houning@gzhmu.edu.cn
纸质出版日期:2024-05-20,
收稿日期:2024-03-22,
录用日期:2024-05-03
扫 描 看 全 文
袁勋,班莉,田松麟等.甲状腺功能亢进激活心肌细胞β-catenin/FoxO1诱导大鼠心室重构的作用[J].中山大学学报(医学科学版),2024,45(03):393-411.
YUAN Xun,BAN Li,TIAN Songlin,et al.Hyperthyroidism Induces Ventricular Remodeling via Activating β-catenin/FoxO1 in Rat Cardiomyocytes[J].Journal of Sun Yat-sen University(Medical Sciences),2024,45(03):393-411.
袁勋,班莉,田松麟等.甲状腺功能亢进激活心肌细胞β-catenin/FoxO1诱导大鼠心室重构的作用[J].中山大学学报(医学科学版),2024,45(03):393-411. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20240515.003.
YUAN Xun,BAN Li,TIAN Songlin,et al.Hyperthyroidism Induces Ventricular Remodeling via Activating β-catenin/FoxO1 in Rat Cardiomyocytes[J].Journal of Sun Yat-sen University(Medical Sciences),2024,45(03):393-411. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20240515.003.
目的
2
探究甲亢激活心肌细胞β-catenin/FoxO1诱导大鼠心室重构的作用和机制。
方法
2
通过甲状腺激素(T4 0.1 mg/kg/day;腹腔注射)连续给药30 d构建甲亢诱导心室重构大鼠体内模型。利用β-catenin抑制剂MSAB(14 mg/kg)同时给药30 d,通过Western-blot检测心肌肥厚主要标志物ANP以及β-catenin、FoxO1等蛋白的表达情况;免疫荧光检测β-catenin、FoxO1的核内外表达及分布情况。利用原代培养的乳鼠心肌细胞,使用甲状腺激素(T3 20 nmol/L)处理心肌细胞24 h构建体外甲亢诱导心肌细胞肥厚模型,利用β-cateninsiRNA(30 nmol/L)转染心肌细胞敲低β-catenin,Western-blot和免疫荧光检测抑制β-catenin对甲亢诱导乳鼠心肌细胞肥厚的影响。
结果
2
Wnt/β-catenin通路激活后β-catenin入核增多并于细胞核内的转录因子结合发挥转录调控作用。β-catenin在甲亢诱导的大鼠心室重构模型心肌细胞核内表达显著增加,而其经典下游转录因子TCF7l2表达无显著差异。我们的结果显示,MSAB抑制β-catenin明显改善甲亢诱导的大鼠心室重构。进一步研究表明甲亢诱导大鼠心肌肥厚过程中心肌细胞β-catenin/FoxO1表达明显增强,抑制心肌细胞β-catenin/FoxO1改善甲亢诱导大鼠心肌肥厚。
结论
2
甲亢性心肌肥厚心肌细胞β-catenin/FoxO1活化,抑制β-catenin/FoxO1改善甲状腺激素诱导的心肌细胞肥大。
Objective
2
To explore how hyperthyroidism induces ventricular remodeling via activating β-catenin/FoxO1 in rat cardiomyocytes.
Methods
2
Hyperthyroidism-induced ventricular remodeling rat models were established by intraperitoneal injection of levothyroxine (T4) at 0.1 mg/kg for 30 days. β-catenin inhibitor MSAB (14 mg/kg) was administrated for 30 days. We used western blot to detect the expression of myocardial hypertrophy marker ANP, β-catenin and FoxO1; immunofluorescence to examine the expression and intracellular distribution of β-catenin and FoxO1. Hyperthyroidism-induced cardiomyocyte hypertrophy rat models were established by treatment of triiodothyronine (T3) into cultured primary neonatal rat cardiomyocytes for 24 hours. β-catenin siRNA (30 nmol/L) was used to down-regulate β-catenin expression in cardiomyocytes. Western blot and immunofluorescence were used to analyze the effects of β-catenin inhibition on the hyperthyroidism-induced cardiomyocyte hypertrophy.
Results
2
Following Wnt/β-catenin activation, β-catenin was found increased nuclear expression, to bind to the nuclear transcriptional factors and regulate the gene expression. β-catenin nuclear expression was significantly increased in the hyperthyroidism-induced ventricular remodeling rats, but no change was found in the expression of typical transcriptional factor TCF7l2. Our results revealed that inhibiting β-catenin by MSAB attenuated the hyperthyroidism-induced rat ventricular remodeling. Further analysis indicated that β-catenin/FoxO1 expression was significantly increased in hyperthyroidism-induced myocardial hypertrophy which could be attenuated by suppressing β-catenin/FoxO1 in cardiomyocytes.
Conclusions
2
β-catenin/FoxO1 is activated in hyperthyroidism-induced myocardial hypertrophy and β-catenin/FoxO1 inhibition attenuates hyperthyroidism-induced cardiomyocyte hypertrophy.
甲状腺功能亢进症心肌肥厚β-连环素叉头盒O1蛋白心肌细胞肥大MSAB甲状腺激素
hyperthyroidismmyocardial hypertrophyβ-cateninFoxO1cardiomyocyte hypertrophyMSABthyroid hormone
Leger J, Carel JC. Diagnosis and management of hyperthyroidism from prenatal life to adolescence[J]. Best Pract Res Clin Endocrinol Metab, 2018, 32(4): 373-386.
Lee SY, Pearce EN. Hyperthyroidism: a review[J]. JAMA, 2023, 330(15): 1472-1483.
Shokri F, Zarei M, Komaki A, et al. Effect of diminazene on cardiac hypertrophy through mitophagy in rat models with hyperthyroidism induced by levothyroxine[J]. Naunyn Schmiedebergs Arch Pharmacol, 2023, 397(2): 1151-1162.
Paschou SA, Bletsa E, Stampouloglou PK, et al. Thyroid disorders and cardiovascular manifestations: an update[J]. Endocrine, 2022, 75(3): 672-683.
Barreto-Chaves MLM, Carrillo-Sepúlveda MA, Carneiro-Ramos MS, et al. The crosstalk between thyroid hormones and the renin–angiotensin system[J]. Vascul Pharmacol, 2010, 52(3-4): 166-170.
郭云飞, 杨迎, 刘福, 等. 心肌I_(K1)激动剂zacopride抗左甲状腺素致大鼠心室重构作用的研究[J]. 中国药理学通报, 2017, 33(05): 641-646.
Guo YF, Yang Y, Liu F, et al. Effect of IK1 agonist zacopride on L-thyroxine-induced ventricular remodeling in rats[J]. Chin Pharmacol Bull, 2017, 33(05): 641-646.
Liu J, Xiao Q, Xiao J, et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities[J]. Signal Transduct Target Ther, 2022, 7(1).
Ahn BY, Jeong MH, Pyun JH, et al. PRMT7 ablation in cardiomyocytes causes cardiac hypertrophy and fibrosis through β-catenin dysregulation[J]. Cell Mol Life Sci, 2022, 79(2): 99.
Goto J, Otaki Y, Watanabe T, et al. HECT (Homologous to the E6-AP Carboxyl Terminus)-Type Ubiquitin E3 Ligase ITCH Attenuates Cardiac Hypertrophy by Suppressing the Wnt/β-Catenin Signaling Pathway[J]. Hypertension, 2020, 76(6): 1868-1878.
Ni B, Sun M, Zhao J, et al. The role of β-catenin in cardiac diseases[J]. Front Pharmacol, 2023, 14: 1157043.
Hou N, Ye B, Li X, et al. Transcription Factor 7-like 2 Mediates Canonical Wnt/β-Catenin Signaling and c-Myc Upregulation in Heart Failure[J]. Circ Heart Fail, 2016, 9(6): e003010. DOI: 10.1161/CIRCHEARTFAILURE.116.003010http://dx.doi.org/10.1161/CIRCHEARTFAILURE.116.003010
Beildeck ME, Gelmann EP, Byers SW. Cross-regulation of signaling pathways: an example of nuclear hormone receptors and the canonical Wnt pathway[J]. Exp Cell Res, 2010, 316(11): 1763-1772.
Mulholland DJ, Dedhar S, Coetzee GA, et al. Interaction of nuclear receptors with the Wnt/beta-catenin/Tcf signaling axis: Wnt you like to know?[J]. Endocr Rev, 2005, 26(7): 898-915.
Milanesi A, Lee JW, Kim NH, et al. Thyroid Hormone Receptor α Plays an Essential Role in Male Skeletal Muscle Myoblast Proliferation, Differentiation, and Response to Injury[J]. Endocrinology, 2016, 157(1): 4-15.
Sirakov M, Kress E, Nadjar J, et al. Thyroid hormones and their nuclear receptors: new players in intestinal epithelium stem cell biology?[J]. Cell Mol Life Sci, 2014, 71(15): 2897-2907.
Inestrosa NC, Varela-Nallar L. Wnt signalling in neuronal differentiation and development[J]. Cell Tissue Res, 2015, 359(1): 215-223.
Krausova M, Korinek V. Wnt signaling in adult intestinal stem cells and cancer[J]. Cell Signal, 2014, 26(3): 570-579.
Zhang CC, Li Y, Jiang CY, et al. O-GlcNAcylation mediates H2O2-induced apoptosis through regulation of STAT3 and FOXO1[J]. Acta Pharmacol Sin, 2024, 45(4): 714-727.
Andrade J, Shi C, Costa ASH, et al. Control of endothelial quiescence by FOXO-regulated metabolites[J]. Nat Cell Biol, 2021, 23(4): 413-423.
Manolagas SC, Almeida M. Gone with the Wnts: beta-catenin, T-cell factor, forkhead box O, and oxidative stress in age-dependent diseases of bone, lipid, and glucose metabolism[J]. Mol Endocrinol, 2007, 21(11): 2605-2614.
Jin T, George Fantus I, Sun J. Wnt and beyond Wnt: multiple mechanisms control the transcriptional property of beta-catenin[J]. Cell Signal, 2008, 20(10): 1697-1704.
Almeida M. Unraveling the role of FoxOs in bone--insights from mouse models[J]. Bone, 2011, 49(3): 319-327.
Ferdous A, Wang ZV, Luo Y, et al. FoxO1–Dio2 signaling axis governs cardiomyocyte thyroid hormone metabolism and hypertrophic growth[J]. Nat Commun, 2020, 11(1): 2551.
Liu X, Yuan X, Liang G, et al. BRG1 protects the heart from acute myocardial infarction by reducing oxidative damage through the activation of the NRF2/HO1 signaling pathway[J]. Free Radic Biol Med, 2020, 160: 820-836.
Iyer LM, Nagarajan S, Woelfer M, et al. A context-specific cardiac beta-catenin and GATA4 interaction influences TCF7L2 occupancy and remodels chromatin driving disease progression in the adult heart[J]. Nucleic Acids Res, 2018, 46(6): 2850-2867.
Carneiro-Ramos MS, Diniz GP, Nadu AP, et al. Blockage of angiotensin Ⅱ type 2 receptor prevents thyroxine-mediated cardiac hypertrophy by blocking Akt activation[J]. Basic Res Cardiol, 2010, 105(3): 325-335.
Senger N, A CP, Marques BVD, et al. Angiotensin-(1-7) prevents T3-induced cardiomyocyte hypertrophy by upregulating FOXO3/SOD1/catalase and downregulating NF-kB[J]. J Cell Physiol, 2021, 236(4): 3059-3072.
Essers MA, De Vries-Smits LM, Barker N, et al. Functional interaction between beta-catenin and FOXO in oxidative stress signaling[J]. Science, 2005, 308(5725): 1181-1184.
Liu H, Fergusson MM, Wu JJ, et al. Wnt Signaling Regulates Hepatic Metabolism[J]. Sci Signal, 2011, 4(158): ra6-ra6.
0
浏览量
4
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构