浏览全部资源
扫码关注微信
暨南大学第二临床医学院肿瘤放疗科,广东 深圳 518000
XU Gang; E-mail: sy2363@126.com
Published:20 July 2023,
Received:02 December 2022,
扫 描 看 全 文
代永杰,徐钢.p53及EGFR与头颈部鳞癌放疗抵抗的关系[J].中山大学学报(医学科学版),2023,44(04):596-600.
DAI Yong-jie,XU Gang.Relationship Between p53, EGFR and Radiotherapy Resistance of Head and Neck Squamous Cell Carcinoma[J].Journal of Sun Yat-sen University(Medical Sciences),2023,44(04):596-600.
代永杰,徐钢.p53及EGFR与头颈部鳞癌放疗抵抗的关系[J].中山大学学报(医学科学版),2023,44(04):596-600. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2023.0408.
DAI Yong-jie,XU Gang.Relationship Between p53, EGFR and Radiotherapy Resistance of Head and Neck Squamous Cell Carcinoma[J].Journal of Sun Yat-sen University(Medical Sciences),2023,44(04):596-600. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2023.0408.
头颈部恶性肿瘤是世界上第七大常见的癌症类型。超过90%的头颈部恶性肿瘤是鳞状细胞癌(HNSCC)。放疗是HNSCC的重要治疗方法之一,肿瘤细胞对放疗的敏感性是放疗有效性的一个关键因素。
p53
是HNSCC中最常见的突变基因之一,表皮生长因子受体(
EGFR
)在许多的HNSCC中过度表达,这两者都能增强细胞DNA的修复,可能与HNSCC的放疗抵抗有关。本文就肿瘤细胞通过
p53
和
EGFR
介导的DNA修复来逃避辐射介导的凋亡机制作一综述。
Head and neck cancers are the seventh most common type of cancer in the world, among which more than 90% are squamous cell carcinomas(HNSCC). Radiotherapy is one of the important treatments for HNSCC, and the sensitivity of tumor cells to the therapy is a key factor influencing the efficacy of treatment.
p53
is one of the most common mutated genes in HNSCC, and epidermal growth factor receptor(
EGFR
) is overexpressed in many HNSCC. Both of these genes could enhance cellular DNA repair, which may be related to the radiotherapy resistance of HNSCC. This review focuses on the mechanisms by which tumor cells escape radiation-mediated apoptosis through
p53
and
EGFR
-mediated DNA repair.
p53表皮生长因子受体放疗抵抗
p53epidermal growth factor receptorradiotherapy resistance
Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods[J]. Int J Cancer, 2019, 144(8): 1941-1953.
Mody MD, Rocco JW, Yom SS, et al. Head and neck cancer[J]. Lancet, 2021, 398(10318): 2289-2299.
Zhou G, Liu Z, Myers JN. TP53 mutations in head and neck squamous cell carcinoma and their impact on disease progression and treatment response[J]. J Cell Biochem, 2016, 117(12): 2682-2692.
Hutchinson MKND, Mierzwa M, D' Silva NJ. Radiation resistance in head and neck squamous cell carcinoma: dire need for an appropriate sensitizer[J]. Oncogene, 2020, 39(18): 3638-3649.
Gunn GB, Blanchard P, Garden AS, et al. Clinical outcomes and patterns of disease recurrence after intensity modulated proton therapy for oropharyngeal squamous carcinoma[J]. Int J Radiat Oncol, 2016, 95(1): 360-367.
Taku N, Wang L, Garden AS, et al. Proton therapy for HPV-associated oropharyngeal cancers of the head and neck: a de-intensification strategy[J]. Curr Treat Options Oncol, 2021, 22(6): 54.
Bos T, Ratti JA, Harada H. Targeting stress-response pathways and therapeutic resistance in head and neck cancer[J]. Front Oral Health, 2021, 2: 676643.
Yamazaki H, Masui K, Suzuki G, et al. Reirradiation for recurrent head and neck carcinoma using high-dose-rate brachytherapy: A multi-institutional study[J]. Brachytherapy, 2022, 21(3): 341-346.
Chabanon RM, Rouanne M, Lord CJ, et al. Targeting the DNA damage response in immuno-oncology: developments and opportunities[J]. Nat Rev Cancer, 2021, 21(11): 701-717.
Levine AJ. p53: 800 million years of evolution and 40 years of discovery[J]. Nat Rev Cancer, 2020, 20(8): 471-480.
Hernandez BLJ, El-Deiry WS. Tumor suppressor p53: biology, signaling pathways, and therapeutic targeting[J]. Biochim Biophys Acta Rev Cancer, 2021, 1876(1): 188556.
Raj N, Attardi LD. The transactivation domains of the p53 protein[J]. Cold Spring Harb Perspect Med, 2017, 7(1): a026047.
Brosh R, Rotter V. When mutants gain new powers: news from the mutant p53 field[J]. Nat Rev Cancer, 2009, 9(10): 701-713.
D'orazi G, Cirone M. Mutant p53 and cellular stress pathways: a criminal alliance that promotes cancer progression[J]. Cancers, 2019, 11(5): 614.
Zhou X, Hao Q, Lu H. Mutant p53 in cancer therapy-the barrier or the path[J]. J Mol Cell Biol, 2019, 11(4): 293-305.
Huang RX, Zhou PK. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer[J]. Signal Transduct Target Ther, 2020, 5(1): 60.
Mansour WY, Bogdanova NV, Kasten-Pisula U, et al. Aberrant overexpression of miR-421 downregulates ATM and leads to a pronounced DSB repair defect and clinical hypersensitivity in SKX squamous cell carcinoma[J]. Radiother Oncol, 2013, 106(1): 147-154.
Roman BR, Aragones A. Epidemiology and incidence of HPV-related cancers of the head and neck[J]. J Surg Oncol, 2021, 124(6): 920-922.
Michalak EM, Villunger A, Adams JM, et al. In several cell types tumour suppressor p53 induces apoptosis largely via Puma but Noxa can contribute[J]. Cell Death Differ, 2008, 15(6): 1019-1029.
Gentil DMA, Lemercier C, Collin-Faure V, et al. Developmental regulation of p53-dependent radiation-induced thymocyte apoptosis in mice[J]. Clin Exp Immunol, 2015, 179(1): 30-38.
Schulz A, Meyer F, Dubrovska A, et al. Cancer stem cells and radioresistance: DNA repair and beyond[J]. Cancers, 2019, 11(6): 862.
Mizuno H, Spike BT, Wahl GM, et al. Inactivation of p53 in breast cancers correlates with stem cell transcriptional signatures[J]. Proc Natl Acad Sci USA, 2010, 107(52): 22745-22750.
Ford AC, Grandis JR. Targeting epidermal growth factor receptor in head and neck cancer[J]. Head Neck, 2003, 25(1): 67-73.
Li Y, Yang C, Gan Y, et al. Radiotherapy plus cetuximab or cisplatin in head and neck squamous cell carcinoma: an updated systematic review and meta-analysis of randomized controlled trials[J]. Eur Arch Oto Rhino Laryngol, 2022, 280(1): 11-22.
Ang KK, Zhang Q, Rosenthal DI, et al. Randomized phase Ⅲ trial of concurrent accelerated radiation plus cisplatin with or without cetuximab for stage Ⅲ to Ⅳ head and neck carcinoma: RTOG 0522[J]. J Clin Oncol, 2014, 32(27): 2940-2950.
Gillison ML, Trotti AM, Harris J, et al. Radiotherapy plus cetuximab or cisplatin in human papillomavirus-positive oropharyngeal cancer (NRG Oncology RTOG 1016): a randomised, multicentre, non-inferiority trial[J]. Lancet, 2019, 393(10166): 40-50.
Mehanna H, Robinson M, Hartley A, et al. Radiotherapy plus cisplatin or cetuximab in low-risk human papillomavirus-positive oropharyngeal cancer (De-ESCALaTE HPV): an open-label randomised controlled phase 3 trial[J]. Lancet, 2019, 393(10166): 51-60.
Li YH, Wang X, Pan Y, et al. Inhibition of non-homologous end joining repair impairs pancreatic cancer growth and enhances radiation response[J]. PLoS One, 2012, 7(6): e39588.
Davidson D, Amrein L, Panasci L, et al. Small molecules, inhibitors of DNA-PK, targeting DNA repair, and beyond[J]. Front Pharmacol, 2013, 4: 5.
Nutley BP, Smith NF, Hayes A, et al. Preclinical pharmacokinetics and metabolism of a novel prototype DNA-PK inhibitor NU7026[J]. Br J Cancer, 2005, 93(9): 1011-1018.
Timme CR, Rath BH, O'neill JW, et al. The DNA-PK inhibitor VX-984 enhances the radiosensitivity of glioblastoma cells grown in vitro and as orthotopic xenografts[J]. Mol Cancer Ther, 2018, 17(6): 1207-1216.
Freschauf GK, Karimi-Busheri F, Ulaczyk-Lesanko A, et al. Identification of a small molecule inhibitor of the human DNA repair enzyme polynucleotide kinase/phosphatase[J]. Cancer Res, 2009, 69(19): 7739-7746.
Chen X, Zhong S, Zhu X, et al. Rational design of human DNA ligase inhibitors that target cellular DNA replication and repair[J]. Cancer Res, 2008, 68(9): 3169-3177.
Srivastava M, Nambiar M, Sharma S, et al. An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression[J]. Cell, 2012, 151(7): 1474-1487.
0
Views
0
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution