浏览全部资源
扫码关注微信
广东药科大学基础医学院/广东省生物活性药物研究重点实验室,广东 广州 510006
JIN Xiao-bao; E-mail: jinxf2001@163.com
Published:20 November 2023,
Received:01 June 2023,
扫 描 看 全 文
黎尔彤,苏雅琳,刘文彬等.基于泛基因组学和消减蛋白质组学挖掘新型抗诺卡氏菌药物靶点[J].中山大学学报(医学科学版),2023,44(06):974-982.
LI Er-tong,SU Ya-lin,LIU Wen-bin,et al.Mining Novel Anti-Nocardia Drug Targets Based on Pan-genomics and Subtractive Proteomics[J].Journal of Sun Yat-sen University(Medical Sciences),2023,44(06):974-982.
黎尔彤,苏雅琳,刘文彬等.基于泛基因组学和消减蛋白质组学挖掘新型抗诺卡氏菌药物靶点[J].中山大学学报(医学科学版),2023,44(06):974-982. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2023.0611.
LI Er-tong,SU Ya-lin,LIU Wen-bin,et al.Mining Novel Anti-Nocardia Drug Targets Based on Pan-genomics and Subtractive Proteomics[J].Journal of Sun Yat-sen University(Medical Sciences),2023,44(06):974-982. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2023.0611.
目的
2
诺卡氏菌是一种病原体,可引起人体的机会性感染,呈全球性分布。近年来发现诺卡氏菌对常用药物已产生耐药性,因此,挖掘新抗诺卡氏菌药物靶点、开发新药物具有迫切需求。
方法
2
取GenBank数据库中31株诺卡氏菌的全基因组序列,利用BPGA进行泛基因组学分析,利用消减蛋白组学筛选药物靶点。在此基础上,同源建模预测靶点蛋白的3D结构,采用DrugBank对靶点蛋白进行潜在药物的预测,并使用分子对接技术验证药物与靶点的结合活性。
结果
2
31株诺卡氏菌的泛基因组中有1 421个核心蛋白,消减蛋白组学分析获得15个候选药物靶点蛋白。其中,OG1493蛋白的理化性质(氨基酸数目、分子量、等电点、总平均亲水性、脂肪指数和不稳定性指数Ⅱ等)最符合作为靶点蛋白的理化性质。运用DrugBank数据库筛选出Adenosine-5'-Rp-Alpha-Thio-Triphosphate、 alpha,beta-Methyleneadenosine 5'-triphosphate、 Phosphoaminophosphonic Acid-Adenylate Ester 、Radicicol、2-Hydroxyestradiol、p-Coumaric acid、Ethylmercurithiosalicylic acid等7个化合物可能会针对该靶点蛋白发挥抗诺卡氏菌作用,分子对接结果显示靶点与化合物结合力良好。经实验验证发现根赤壳霉素可能是针对该靶点的抗诺卡氏菌药物。
结论
2
泛基因组学和消减蛋白质组学可应用于挖掘新型抗诺卡氏菌药物靶点 。
Objective
2
Nocardia
is an apathogen that causes opportunistic infections in humans and has a global distribution. In recent years, resistance of
Nocardia
to commonly used drugs have been observed, highlighting the urgent need for the identification of new drug targets and the development of novel antimicrobial agents against
Nocardia.
Methods
2
Thirty-one complete genome sequences of
Nocardia
strains were retrieved from the GenBank database. Pan-genomic analysis was performed using BPGA, and drug target candidates were screened using subtractive proteomics. Homology modeling was employed to predict the 3D structures of target proteins, and potential drugs targeting these proteins were predicted using DrugBank. Molecular docking techniques were utilized to validate the binding activity between the drugs and target proteins.
Results
2
The pan-genomic analysis of the 31
Nocardia
strains revealed 1 421 core proteins. Fifteen candidate drug target proteins were identified through subtractive proteomics analysis. Among them, the physicochemical properties of the OG1493 protein (such as amino acid count, molecular weight, isoelectric point, grand average of hydropathicity, fat index,and instability index Ⅱ) were found to be most suitable for a drug target protein. Using the DrugBank database, seven compounds, namely Adenosine-5'-Rp-Alpha-Thio-Triphosphate, alpha,beta-Methyleneadenosine 5'-triphosphate, Phosphoaminophosphonic Acid-Adenylate Ester ,Radicicol,2-Hydroxyestradiol, p-Coumaric acid, and Ethylmercurithiosalicylic acid were identified as potential compounds capable of exerting anti-
Nocardia
effects by targeting this protein. Molecular docking results indicated a strong binding affinity between the target protein and these compounds. The experimental result showed that that Radicicol could be a potential antibacterial drug targeting this particular protein.
Conclusion
2
Pan-genomic analysis and subtractive proteomics are valuable approaches for mining novel anti-
Nocardia
drug targets.
诺卡氏菌泛基因组学消减蛋白质组学核心基因药物靶点
Nocardiapan-genomicssubtractive proteomicscore genedrug target
Del Rio-Rodriguez RE, Ramirez-Paredes JG, Soto-Rodriguez SA, et al. First evidence of fish nocardiosis in mexico caused by nocardia seriolae in farmed red drum (Sciaenops ocellatus, Linnaeus)[J]. J Fish Dis, 2021, 44(8): 1117-1130.
Martínez-BarricarteR. Isolated nocardiosis, an unrecognized primary immunodeficiency?[J]. Front Immunol, 2020, 11: 590239.
Lv HY, Chen MY, Ji YQ, et al. A rare case of a subcutaneous abscess caused by nocardia cyriacigeorgica in an immunocompetent Patient[J]. Infect Drug Resist, 2023, 16(6): 263-268.
El Chediak A, Triozzi JL, Schaefer H, et al. Disseminated nocardiosis in kidney transplant recipients: a report of 2 cases[J]. Kidney Med, 2022, 4(12): 100551.
Wang H, Zhu Y, Cui QZ, et al. Epidemiology and antimicrobial resistance profiles of the nocardia species in china, 2009 to 2021[J]. Microbiol Spectr, 2022, 10(2): e0156021.
Nouioui I, Cortes-Albayay C, Neumann-Schaal M, et al. Genomic virulence features of two novel species nocardia barduliensis sp. nov. and nocardia gipuzkoensis sp. nov., isolated from patients with chronic pulmonary diseases[J]. Microorganisms, 2020, 8(10): 1517.
Toyokawa M, Taniguchi M, Uesaka K, et al. Complete genome sequence of multidrug-resistant strain nocardia wallacei FMUON74, isolated from a sputum culture[J]. Microbiol Resour Announc, 2020, 9(47): e01022.
Xu S, Li ZP, Huang YM, et al. Whole genome sequencing reveals the genomic diversity, taxonomic classification, and evolutionary relationships of the genus nocardia[J]. PLoS Negl Trop Dis, 2021, 15(8): e0009665.
Anani H, Zgheib R, Hasni I, et al. Interest of bacterial pangenome analyses in clinical microbiology[J]. Microb Pathog, 2020, 149: 104275.
Cai QM, Huang YC, Zhou L, et al. A complete genome of nocardia terpenica NC _ YFY _ NT001 and pan-genomic analysis based on different sources of nocardia spp. isolates reveal possibly host-related virulence factors[J]. Infect Drug Resist, 2022, 15(12): 7259-7270.
方源, 谢柏盛, 黄婷, 等. 34株假单胞菌的泛基因组分析[J]. 应用与环境生物学报, 2021, 27(4): 1031-1038.
Fang Y, Xie BS, Huang T, et al. Pan-genomic characteristic of 34 pseudomonas strains[J]. Chin J Appl Environ Biol, 2021, 27(4): 1031-1038.
Uddin R, Siraj B, Rashid M, et al. Genome subtraction and comparison for the identification of novel drug targets against mycobacterium avium subsp. Hominissuis[J]. Pathogens, 2020, 9(5): 368-373.
Uddin R, Siddiqui QN, Azam SS, et al. Identification and characterization of potential druggable targets among hypothetical proteins of extensively drug resistant mycobacterium tuberculosis (XDR KZN 605) through subtractive genomics approach[J]. Eur J Pharm Sci, 2018, 114(10): 13-23.
Duarte Y, Márquez-Miranda V, Miossec MJ, et al. Integration of target discovery, drug discovery and drug delivery: a review on computational strategies[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2019, 11(4): e1554.
Chen X, Yan CC, Zhang X, et al. Drug-target interaction prediction: databases, web servers and computational models[J]. Brief Bioinform, 2016, 17(4): 696-712.
王影姣. 美洲大蠊肠道内生放线菌的多样性研究[D]. 广东药科大学, 2016.
Wang YJ. The diversity research of periplaneta americana intestinal endogenous actinomyces[D]. Guangdong Pharm Univ, 2016.
Caso Coelho V, Pereira Neves SD, Cintra Giudice M, et al. Evaluation of antimicrobial susceptibility testing of nocardia spp. isolates by broth microdilution with resazurin and spectrophotometry[J]. BMC Microbiol, 2021, 21(1): 330-332.
Setzer MS, Sharifi-Rad J, Setzer WN. The search for herbal antibiotics: an in-silico investigation of antibacterial phytochemicals[J]. Antibiotics (Basel), 2016, 5(3): 30-33.
Cadelis MM, Li SA, van de Pas SJ, et al. Antimicrobial natural products from plant pathogenic fungi[J]. Molecules, 2023, 28(3): 1142-1145.
Li J, Zhao N, Xu RY, et al. Deciphering the antibacterial activity and mechanism of p-coumaric acid against alicyclobacillus acidoterrestris and its application in apple juice[J]. Int J Food Microbiol, 2022, 378: 109822.
何鹏, 梁争论. 硫柳汞防腐剂在人用疫苗中的应用[J]. 中国生物制品学杂志, 2013, 26(9): 135-143.
He P, Liang ZL. Application of thimerosal as a preservative to vaccines for human use[J]. Chin J Biol, 2013, 26(9): 135-143.
赵永兵. 泛基因组学分析方法开发及应用[D]. 中国科学院北京基因组研究所, 2014.
Zhao YB. Development and application of pan-genomics analytical method[D]. Beijing Institute of genome research, Chinese Academy of Sciences, 2014.
Muzzi A, Masignani V, Rappuoli R. The pan-genome: towards a knowledge-based discovery of novel targets for vaccines and antibacterials[J]. Drug Discov Today, 2007, 12(12): 429-439.
Dar HA, Zaheer T, Ullah N, et al. Pangenome analysis of mycobacterium tuberculosis reveals core-drug targets and screening of promising lead compounds for drug discovery[J]. Antibiotics (Basel), 2020, 9(11): 819-833.
Basharat Z, Jahanzaib M, Yasmin A, et al. Pan-genomics, drug candidate mining and ADMET profiling of natural product inhibitors screened against yersinia pseudotuberculosis[J]. Genomics, 2020, 113(1): 238-244.
Gul H, Ali SS, Saleem S, et al. Subtractive proteomics and immunoinformatics approaches to explore bartonella bacilliformis proteome (virulence factors) to design B and T cell multi-epitope subunit vaccine[J]. Infect Genet Evol, 2020, 85: 104551.
Luo H, Lin Y, Gao F, et al. DEG 10, an update of the database of essential genes that includes both protein-coding genes and noncoding genomic elements[J]. Nucleic Acids Res, 2014, 42(D1): D574-D580.
Chen LH, Yang J, Yu J, et al. VFDB: a reference database for bacterial virulence factors[J]. Nucleic Acids Research, 2005, 33(4): D325-D328.
Golchha NC, Nighojkar A, Nighojkar S. Redefining genomic view of clostridioides difficile through pangenome analysis and identification of drug targets from its core genome[J]. Drug Target Insights, 2022, 16(8): 17-24.
Chawley P, Samal HB, Prava J, et al. Comparative genomics study for identification of drug and vaccine targets in vibrio cholerae: MurA ligase as a case study[J]. Genomics, 2014, 103(1): 83-93.
Gashaw I, Ellinghaus P, Sommer A, et al. What makes a good drug target?[J]. Drug Discov Today, 2011, 16(7): 1037-1043.
Solanki V, Tiwari V, et al. Subtractive proteomics to identify novel drug targets and reverse vaccinology for the development of chimeric vaccine against acinetobacter baumannii[J]. Sci Rep, 2018, 8(1): 9044.
Chang KY, Yang JR. Analysis and prediction of highly effective antiviral peptides based on random forests[J]. PloS One, 2013, 8(8): e70166.
Gong J, Chen Y, Pu F, et al. Understanding membrane protein drug targets in computational perspective[J]. Curr Drug Targets, 2019, 20(5): 551-556.
Kumar A, Ahmad A, Vyawahare A. Membrane trafficking and subcellular drug targeting pathways[J]. Front Pharmacol, 2020, 11: 629.
Rang J, He H, Chen J, et al. SenX3-RegX3, an important two-component system, regulates strain growth and butenyl-spinosyn biosynthesis in saccharopolyspora pogona[J]. iScience, 2020, 23(8):101398.
Namugenyi SB, Aagesen AM, Elliott SR, et al. Mycobacterium tuberculosis PhoY proteins promote persister formation by mediating Pst/SenX3-RegX3 phosphate sensing[J]. mBio,2017,8(4): e00494.
Glover RT, Kriakov J, Garforth SJ, et al.The two-component regulatory system senX3-regX3 regulates phosphate-dependent gene expression in mycobacterium smegmatis[J]. J Bacteriol, 2007,189(15): 5495-5503.
吴坚, 薛晓燕, 王丽芳, 等. 分子对接方法应用与发展[J]. 亚太传统医药, 2013,9(12): 80-81.
Wu J, Xue XY, Wang LF, et al. Application and development of molecular docking methods[J]. Asia-Pac Trad Med, 2013, 9(12): 80-81.
席晓萌, 姜云鸽, 王琳, 等. 基于分子对接技术探究黄酮类化合物对α-葡萄糖苷酶抑制作用的机制[J]. 云南民族大学学报(自然科学版), 2021, 34(12): 525-531.
Xi XM, Jiang YH, Wang L, et al. The mechanism of flavonoid inhibition on α-glucosidase was investigated based on molecular docking technique[J]. J Yunnan Nation Univ (Nat Sci Edi), 2021, 34(12): 525-531.
0
Views
9
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution