浏览全部资源
扫码关注微信
1.广东食品药品职业学院,广东 广州 510520
2.江苏医药职业学院盐城市偏瘫康复工程技术研究中心, 江苏 盐城 224005
LUO Yougen; E-mail: lyougen@163.com
Published:20 January 2024,
Received:16 October 2023,
Accepted:11 December 2023
扫 描 看 全 文
刘筱蔼,罗友根.MiRNA调控脑缺血/再灌注诱导的自噬信号通路研究进展[J].中山大学学报(医学科学版),2024,45(01):21-27.
LIU Xiaoai,LUO Yougen.MiRNA Regulating Autophagy Signaling Pathway Induced by Cerebral Ischemia/Reperfusion[J].Journal of Sun Yat-sen University(Medical Sciences),2024,45(01):21-27.
刘筱蔼,罗友根.MiRNA调控脑缺血/再灌注诱导的自噬信号通路研究进展[J].中山大学学报(医学科学版),2024,45(01):21-27. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20240004.003.
LIU Xiaoai,LUO Yougen.MiRNA Regulating Autophagy Signaling Pathway Induced by Cerebral Ischemia/Reperfusion[J].Journal of Sun Yat-sen University(Medical Sciences),2024,45(01):21-27. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20240004.003.
脑卒中时缺血缺氧致脑组织功能损伤,且缺血后脑组织再恢复血液供应时,大量自由基、钙超载等引起脑缺血/再灌注损伤,进一步加重病情。自噬是一种维持细胞内环境稳态的自我保护机制,但过度自噬引起脑组织损伤。MiRNA为小的内源性非编码RNA分子,通过与其靶基因mRNA的3’ -UTR中的互补序列结合,导致翻译抑制或mRNA降解,从基因水平上调控多种生理活动。MiRNA不仅直接作用于自噬相关蛋白,还可通过多种信号通路,参与缺血/再灌注诱导的自噬调控。但关于miRNA调控脑缺血/再灌注诱导的自噬信号通路尚缺乏系统性归纳与分析。本文综述了miRNA-124、miRNA-298、miRNA-202-5p、miRNA-142以及miRNA-26b等miRNA通过不同信号通路调控脑缺血/再灌注中的细胞自噬,为脑卒中的自噬研究提供了系统的理论思路。
Ischemia and hypoxia cause functional damage to brain tissues during stroke, and when blood supply is restored to brain tissues after ischemia, a large number of free radicals and calcium overload cause cerebral ischemia-reperfusion injury, which further aggravates the condition. Autophagy is a self-protection mechanism that maintains the homeostasis of the intracellular environment, but excessive autophagy causes brain tissue damage. MiRNA is a small endogenous non-coding RNA molecule that regulate various physiological activities at the gene level by binding to complementary sequences in the 3 '- UTR of its target gene mRNA, leading to translation inhibition or mRNA degradation. MiRNA not only directly acts on autophagy related proteins, but also participates in autophagy regulation induced by ischemia/reperfusion through various signaling pathways. However, there is still a lack of systematic induction and analysis of miRNA regulation of autophagy signaling pathways induced by cerebral ischemia/reperfusion. This article reviews the regulation of cellular autophagy during cerebral ischemia/ reperfusion by miRNA-124, miRNA-298, miRNA-202-5p, miRNA-142, miRNA-26b and so on through different signaling pathways, providing a systematic and theoretical approach for the study of autophagy in stroke.
脑缺血/再灌注损伤微小RNA自噬信号通路自噬相关蛋白调控
cerebral ischemia reperfusion injuryMicroRNAautophagysignal pathwayautophagy related proteinsregulation
Krishnamurthi RV, Feigin VL, Forouzanfar MH, et al. Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990-2010: findings from the Global Burden of Disease Study 2010 [J]. Lancet Glob Health, 2013, 1(5): e259-e281.
Rana AK, Singh D. Targeting glycogen synthase kinase-3 for oxidative stress and neuroinflammation: opportunities, challenges and future directions for cerebral stroke management [J]. Neuropharmacology, 2018, 1(139): 124-136.
Zeng X, Zhang YD, Ma RY, et al. Activated Drp1 regulates p62-mediated autophagic flux and aggravates inflammation in cerebral ischemia-reperfusion via the ROS-RIP1/RIP3-exosome axis [J]. Mil Med Res, 2022, 9(1): 25.
Zhou J, Wu JS, Yan Y, et al. MiR-199a modulates autophagy and inflammation in rats with cerebral infarction via regulating mTOR expression [J]. Eur Rev Med Pharmacol Sci, 2020, 24(11): 6338-6345.
Cao Y, Zhang H, Lu X, et al. Overexpression of MicroRNA-9a-5p ameliorates NLRP1 inflammasome-mediated ischemic injury in rats following ischemic stroke [J]. Neuroscience, 2020, 444:106-117.
Korkmaz G, Sage C, Tekirdag KA, et al. miR-376b controls starvation and mTOR inhibition-related autophagy by targeting ATG4C and BECN1[J]. Autophagy, 2012, 8(2):165-176.
Cai Y, Li X, Pan Z, et al. Anthocyanin ameliorates hypoxia and ischemia induced inflammation and apoptosis by increasing autophagic flux in SH-SY5Y cells [J]. Eur J Pharmacol, 2020, 883:173360.
Zhang X, Fu C, Chen B, et al. Autophagy induced by oxygen-glucose deprivation mediates the injury to the neurovascular unit [J]. Med Sci Monit, 2019, 25:1373-1382.
Simard JM, Kent TA, Chen M, et al. Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications [J]. Lancet Neurol, 2007, 6(3): 258-268.
王冬睿, 范蕾. 脑缺血再灌注神经细胞凋亡机制研究进展[J]. 中国药理学与毒理学杂志, 2019, 33(9): 751.
Wang DR, Fan L. Apoptosis of nerve cells induced by cerebral ischemia-reperfusion [J]. Chin J Pharmacol Toxicity, 2019, 33(9): 751.
Zhu L, Zhou X, Li S, et al. miR-183-5p attenuates cerebral ischemia injury by negatively regulating PTEN [J]. Mol Med Rep, 2020, 22(5): 3944-3954.
Alves AJ, Viana JL, Cavalcante SL, et al. Physical activity in primary and secondary prevention of cardiovascular disease: overview updated [J]. World J Cardiol, 2016, 8(10): 575-583.
Mendy VL, Vargas R, Payton M, et al. Trends in mortality rates by subtypes of heart disease in Mississippi, 1980-2013 [J]. BMC Cardiovasc Disord, 2017, 17(1): 158.
Ghafouri-Fard S, Shoorei H, Taheri M. Non-coding RNAs participate in the ischemia-reperfusion injury [J]. Biomed Pharmacother, 2020, 129:110419.
Yuan Y, Wang JY, Xu LY, et al. MicroRNA expression changes in the hippocampi of rats subjected to global ischemia [J]. J Clin Neurosci, 2010, 17(6): 774-778.
Kim T, Mehta SL, Morris-Blanco KC, et al. The microRNA miR-7a-5p ameliorates ischemic brain damage by repressing α-synuclein [J]. Sci Signal, 2018, 11(560): eaat4285.
Zhang Y, Shan Z, Zhao Y, et al. Sevoflurane prevents miR-181a-induced cerebral ischemia/reperfusion injury [J]. Chem Biol Interact, 2019, 308: 332-338.
Mellis D, Caporali A. MicroRNA-based therapeutics in cardiovascular disease: screening and delivery to the target [J]. Biochem Soc Trans, 2018, 46(1): 11-21.
Takata T, Nonaka W, Iwama H, et al. Light exercise without lactate elevation induces ischemic tolerance through the modulation of microRNA in the gerbil hippocampus [J]. Brain Res, 2020, 1732: 146710.
Zheng L, Terman A, Hallbeck M, et al. Macroautophagy-generated increase of lysosomal amyloid beta-protein mediates oxidant-induced apoptosis of cultured neuroblastoma cells [J]. Autophagy, 2011, 7(12): 1528-1545.
Fernández ÁF, Sebti S, Wei Y, et al. Disruption of the beclin 1-BCL2 autophagy regulatory complex promotes longevity in mice [J]. Nature, 2018, 558(7708): 136-140.
Sun Y, Yao X, Zhang QJ, et al. Beclin-1-dependent autophagy protects the heart during sepsis [J]. Circulation, 2018, 138(20): 2247-2262.
Sun B, Ou H, Ren F, et al. Propofol inhibited autophagy through Ca2+/CaMKKβ/AMPK/mTOR pathway in OGD/R-induced neuron injury [J]. Mol Med, 2018, 24(1): 58.
Deng YH, He HY, Yang LQ, et al. Dynamic changes in neuronal autophagy and apoptosis in the ischemic penumbra following permanent ischemic stroke [J]. Neural Regen Res, 2016, 11(7): 1108-1114.
Shi R, Weng J, Zhao L, et al. Excessive autophagy contributes to neuron death in cerebral ischemia [J]. CNS Neurosci Ther, 2012, 18(3): 250-260.
Peng C, Rao W, Zhang L, et al. Mitofusin 2 exerts a protective role in ischemia reperfusion injury through increasing autophagy [J]. Cell Physiol Biochem, 2018, 46(6): 2311-2324.
Su J, Zhang T, Wang K, et al. Autophagy activation contributes to the neuroprotection of remote ischemic perconditioning against focal cerebral ischemia in rats [J]. Neurochem Res, 2014, 39(11): 2068-2077.
胡跃强, 唐农, 秦红玲, 等. P62通过调控自噬与抗氧化通路保护大鼠脑缺血再灌注损伤[J]. 中国老年心血管病杂志, 2019, 21(3): 304-308.
Hu YQ, Tang N, Qin HL, et al. P62 protects rats against cerebral ischemia reperfusion injury by regulating autophagy and antioxidant pathway [J]. Chin J Geriatr Heart Brain Vessel Dis, 2019, 21(3): 304-308.
Jiang WW, Huang BS, Han Y, et al. Sodium hydrosulfide attenuates cerebral ischemia/reperfusion injury by suppressing overactivated autophagy in rats [J]. FEBS Open Bio, 2017, 7(11): 1686-1695.
Qi Z, Dong W, Shi W, et al. Bcl-2 phosphorylation triggers autophagy switch and reduces mitochondrial damage in limb remote ischemic conditioned rats after ischemic stroke[J]. Transl Stroke Res, 2015, 6(3):198-206.
冯刚,封蔚彬,青云,等.电针预处理通过抑制AMPK-Beclin1/Vps34通路介导的细胞自噬减轻脑缺血再灌注损伤[J].重庆医科大学学报,2020,45(12):1762-1769
Feng G, Feng WB, Qing Y, et al. Electroacupuncture pretreatment reduces cerebral ischemia/reperfusion injury through inhibiting the AMPK-Beclin1/Vps34 pathway-mediated autophagy[J].J Chongqing Med Univ, 2020, 45(12):1762-1769
Yang Y, Zhang N, Wang S, et al. MicroRNA-155 regulates inflammatory response in ischemic cerebral tissues through autophagy [J]. Curr Neurovasc Res, 2018, 15(2): 103-110.
杨梦戈,张晓洁,肇玉明. MicroRNA对缺血性脑卒中自噬调控作用的研究进展[J]. 生命的化学, 2019, 39(2): 338-352.
Yang MG, Zhang XJ, Zhao YM. Research progress of microRNA on the regulation of autophagy in ischemia stroke [J]. Chemistry of life, 2019, 39(2): 338-352.
Ren Z, Xie P, Lv J, et al. miR-187-3p inhibitor attenuates cerebral ischemia/reperfusion injury by regulating Seipin-mediated autophagic flux [J]. Int J Mol Med, 2020, 46(3): 1051-1062.
Liu X, Feng Z, Du L, et al. The potential role of MicroRNA-124 in cerebral ischemia injury [J]. Int J Mol Sci, 2019, 21(1): 120.
Fan W, Rong J, Shi W, et al. GATA6 inhibits neuronal autophagy and ferroptosis in cerebral ischemia- reperfusion injury through a miR-193b/ATG7 axis-dependent mechanism[J]. Neurochem Res, 2023, 48(8): 2552-2567.
Yu S, Yu M, He X, et al. KCNQ1OT1 promotes autophagy by regulating miR-200a/FOXO3/ATG7 pathway in cerebral ischemic stroke [J]. Aging Cell, 2019, 18(3): e12940.
Chen H, Lu Q, Chen C, et al. β-catenin regulates effects of miR-24 on the viability and autophagy of glioma cells [J]. Exp Ther Med, 2019, 18(2): 1285-1290.
Ersahin T, Tuncbag N, Cetin-Atalay R. The PI3K/AKT/mTOR interactive pathway [J]. Mol Biosyst, 2015, 11(7): 1946-1954.
Carloni S, Balduini W. Simvastatin preconditioning confers neuroprotection against hypoxia-ischemia induced brain damage in neonatal rats via autophagy and silent information regulator 1 (SIRT1) activation [J]. Exp Neurol, 2020, 324: 113117.
Guo X, Liu Y, Zhao Y, et al. Role of the PI3K-mTOR autophagy pathway in nerve damage in rats with intermittent hypoxia-aggravated whole brain ischemia [J]. Mol Med Rep, 2019, 20(2): 1411-1417.
张娟, 徐丹, 何黎, 等.PI3K/Akt/mTOR信号通路在上皮源性恶性肿瘤中的研究进展[J]. 现代肿瘤医学, 2017, 25(14): 2330⁃2333.
Zhang J, Xu D, He L, et al. The research progress of PI3K/Akt/mTOR signaling pathway in epithelial malignant tumor [J]. Modern Oncology, 2017, 25(14): 2330⁃2333.
Xie CM, Sun Y. The MTORC1-mediated autophagy is regulated by the FBXW7-SHOC2-RPTOR axis [J]. Autophagy, 2019, 15(8): 1470-1472.
Miao W, Yan Y, Bao TH, et al. Ischemic postconditioning exerts neuroprotective effect through negatively regulating PI3K/Akt2 signaling pathway by microRNA-124 [J]. Biomed Pharmacother, 2020, 126: 109786.
Liu P, Liu P, Wang Z, et al. Inhibition of MicroRNA-96 ameliorates cognitive impairment and inactivation autophagy following chronic cerebral hypoperfusion in the rat [J]. Cell Physiol Biochem, 2018, 49(1): 78-86.
Li J, Wang K, Liu M, et al. Dexmedetomidine alleviates cerebral ischemia-reperfusion injury via inhibiting autophagy through PI3K/Akt/mTOR pathway [J]. J Mol Histol, 2023, 54(3): 173-181.
Zhang H, Wang X, Chen W, et al. Danhong injection alleviates cerebral ischemia-reperfusion injury by inhibiting autophagy through miRNA-132-3p/ATG12 signal axis[J]. J Ethnopharmacol, 2023, 10(300): 115724.
Amorim IS, Lach G, Gkogkas CG. The role of the eukaryotic translation initiation factor 4E (eIF4E) in neuropsychiatric disorders [J]. Front Genet, 2018, 11(9): 561-570.
Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease [J]. Cell, 2017, 168(6): 960-976.
Li B, Huang Z, Meng J, et al. MiR-202-5p attenuates neurological deficits and neuronal injury in MCAO model rats and OGD-induced injury in Neuro-2a cells by targeting eIF4E-mediated induction of autophagy and inhibition of Akt/GSK-3β pathway [J]. Mol Cell Probes, 2020, 51: 101497.
He G, Xu W, Tong L, et al. Gadd45b prevents autophagy and apoptosis against rat cerebral neuron oxygen-glucose deprivation/reperfusion injury [J]. Apoptosis, 2016, 21(4): 390-403.
He GQ, Chen Y, Liao HJ, et al. Associations between Huwe1 and autophagy in rat cerebral neuron oxygen-glucose deprivation and reperfusion injury [J]. Mol Med Rep, 2020, 22(6): 5083-5094.
Sun H, Zhong D, Wang C, et al. MiR-298 exacerbates ischemia/reperfusion injury following ischemic stroke by targeting Act1 [J]. Cell Physiol Biochem, 2018, 48(2): 528-539.
Fan J, Liu Y, Yin J, et al. Oxygen- glucose- deprivation/reoxygenation-induced autophagic cell death depends on JNK-mediated phosphorylation of Bcl-2 [J]. Cell Physiol Biochem, 2016, 38(3): 1063-1074.
Mo Y, Sun YY, Yue E, et al. MicroRNA-379-5p targets MAP3K2 to reduce autophagy and alleviate neuronal injury following cerebral ischemia via the JNK/c-Jun signaling pathway [J]. Kaohsiung J Med Sci, 2022, 38(3): 230-243.
Perry MM, Tsitsiou E, Austin PJ, et al. Role of non-coding RNAs in maintaining primary airway smooth muscle cells [J]. Respir Res, 2014, 15(1): 58-65.
Guo D, Ma J, Yan L, et al. Down-regulation of lncRNA MALAT1 attenuates neuronal cell death through suppressing Beclin1-dependent autophagy by regulating miR-30a in cerebral ischemic stroke [J]. Cell Physiol Biochem, 2017, 43(1): 182-194.
Li Z, Li J, Tang N. Long noncoding RNA Malat1 is a potent autophagy inducer protecting brain microvascular endothelial cells against oxygen-glucose deprivation/ reoxygenation-induced injury by sponging miR-26b and upregulating ULK2 expression [J]. Neuroscience, 2017, 354: 1-10.
Cuervo AM. Chaperone-mediated autophagy: selectivity pays off [J]. Trends Endocrinol Metab, 2010, 21(3): 142-150.
Che H, Yan Y, Kang XH, et al. MicroRNA-27a promotes inefficient lysosomal clearance in the hippocampi of rats following chronic brain hypoperfusion [J]. Mol Neurobiol, 2017, 54(4): 2595-2610.
Zhang L, Li Z, Mao L, et al. Circular RNA in acute central nervous system injuries: a new target for therapeutic intervention [J]. Front Mol Neurosci, 2022, 15: 816182.
Han B, Zhang Y, Zhang Y, et al. Novel insight into circular RNA HECTD1 in astrocyte activation via autophagy by targeting MIR142-TIPARP: implications for cerebral ischemic stroke [J]. Autophagy, 2018, 14(7): 1164-1184.
0
Views
5
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution