浏览全部资源
扫码关注微信
中国人民解放军东部战区总医院干部病房一科,江苏 南京 210002
WAN Wenhui; E-mail:wanwhnj@163.com
Published:20 March 2024,
Received:13 December 2023,
Accepted:08 March 2024
扫 描 看 全 文
杨晨,万文辉.N-乙酰半胱氨酸在缺血性脑卒中的作用及机制[J].中山大学学报(医学科学版),2024,45(02):190-195.
YANG Chen,WAN Wenhui.Effect and Mechanism of N-acetylcysteine in Ischemic Stroke[J].Journal of Sun Yat-sen University(Medical Sciences),2024,45(02):190-195.
杨晨,万文辉.N-乙酰半胱氨酸在缺血性脑卒中的作用及机制[J].中山大学学报(医学科学版),2024,45(02):190-195. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2024.0203.
YANG Chen,WAN Wenhui.Effect and Mechanism of N-acetylcysteine in Ischemic Stroke[J].Journal of Sun Yat-sen University(Medical Sciences),2024,45(02):190-195. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2024.0203.
缺血性脑卒中(CIS)是指因脑部血液循环障碍,缺血、缺氧所致的局限性脑组织的缺血性坏死或软化,其发病率在脑血管病中占据首位。氧气和营养供应的减少会导致神经元的严重丧失,并导致中风患者脑功能的缺陷。开发缺血性脑卒中的治疗方法仍然是临床医学的重要挑战。抗氧化剂N-乙酰半胱氨酸(NAC)是谷胱甘肽前体物质,缺血性脑卒中动物模型及一些临床研究的证据表明,NAC可以有效地保护大脑免受缺血损伤。本文从抗氧化、抑制炎症、保护脑神经和线粒体功能、稳定动脉斑块及溶栓功能等多方面阐述NAC在CIS中的作用机制,旨在从基础层面深入探究NAC与CIS的关系,为NAC进一步应用于缺血性脑卒中患者的防治提供理论依据。
Ischemic stroke (CIS) refers to ischemic necrosis or softening of localized brain tissue caused by cerebral blood circulation disorders, ischemia and hypoxia. The incidence of CIS is the highest among cerebrovascular diseases. Reduced supply of oxygen and nutrients leads to severe loss of neurons and deficits in brain function in stroke patients. Developing treatments for ischemic stroke remains an important challenge in clinical medicine. The antioxidant N-acetylcysteine (NAC) is a precursor of glutathione, and evidence from animal models of ischemic stroke and some clinical studies suggest that NAC can effectively protect the brain from ischemic damage. In this paper, the mechanism of NAC in CIS is described from various aspects, such as anti-oxidation, inhibition of inflammation, protection of cerebral nerve and mitochondrial function, stabilization of arterial plaque and thrombolytic function, aiming to explore the relationship between NAC and CIS in depth from the basic level, and to provide a theoretical basis for the further application of NAC in the prevention and treatment of patients with ischemic stroke.
N-乙酰半胱氨酸缺血性脑卒中氧化应激炎症溶栓
N-acetylcysteineischemic strokeoxidative stressinflammationthrombolysis
Moskowitz MA, Lo EH, Iadecola C. The science of stroke: mechanisms in search of treatments[J]. Neuron, 2010, 67:181-198.
Sabetghadam M, Mazdeh M, Abolfathi P, et al. Evidence for a beneficial effect of oral N-acetylcysteine on functional outcomes and inflammatory biomarkers in patients with acute ischemic stroke[J]. Neuropsychiatr Dis Treat, 2020 , 16:1265-1278.
Samuni Y, Goldstein S, Dean OM, et al. The chemistry and biological activities of n-acetylcysteine[J]. Biochim Biophys Acta, 2013 , 1830(8):4117-4129.
Hurst GA, Shaw PB, LeMaistre CA. Laboratory and clinical evaluation of the mucolytic properties of acetylcysteine[J]. Am Rev Respir Dis, 1967 ,96(5):962-970.
Prescott LF, Park J, Ballantyne A, et al. Treatment of paracetamol (acetaminophen) poisoning with N-acetylcysteine[J]. Lancet,1977 , 2(8035):432-434.
Tang W, Zhu D, Wu F, et al. Intravenous N-acetylcysteine in respiratory disease with abnormal mucus secretion[J]. Eur Rev Med Pharmacol Sci, 2023,27(11):5119-5127.
李文娟,张理意,周宇麒. 吡非尼酮联合乙酰半胱氨酸治疗肺纤维化一例并文献复习[J]. 新医学, 2022, 53(1):52-57.
Li WJ,Zhang LY,Zhou YQ. Pirfenidone combined with N-acetylcysteine in treatment of pulmonary fibrosis: a case report and literature review[J]. J New Med, 2022,53(1): 52-57.
Zhu Q, Xiao Y, Jiang M, et al. N-acetylcysteine attenuates atherosclerosis progression in aging LDL receptor deficient mice with preserved M2 macrophages and increased CD146[J]. Atherosclerosis, 2022, 357:41-50.
Fan H, Le JW, Zhu JH. Protective effect of N-Acetylcysteine pretreatment on acute kidney injury in septic rats[J]. J Surg Res, 2020, 254:125-134.
Lee SI, Kang KS. N-acetylcysteine modulates lipopolysaccharide-induced intestinal dysfunction[J]. Sci Rep, 2019 , 9(1):1004.
Manoharan A, Das T, Whiteley GS, et al. The effect of N-acetylcysteine in a combined antibiofilm treatment against antibiotic-resistant staphylococcus aureus[J]. J Antimicrob Chemother, 2020, 75(7):1787-1798.
Morgan AM, Hassanen EI, Ogaly HA, et al. The ameliorative effect of N-acetylcysteine against penconazole induced neurodegenerative and neuroinflammatory disorders in rats[J]. J Biochem Mol Toxicol, 2021 , 35(10):e22884.
Neuwelt EA, Pagel MA, Hasler BP, et al. Therapeutic efficacy of aortic administration of N-acetylcysteine as a chemoprotectant against bone marrow toxicity after intracarotid administration of alkylators, with or without glutathione depletion in a rat model[J]. Cancer Res, 2001, 61(21):7868-7874.
Farr SA, Poon HF, Dogrukol-Ak D, et al. The antioxidants alpha-lipoic acid and N-acetylcysteine reverse memory impairment and brain oxidative stress in aged SAMP8 mice[J]. J Neurochem, 2003 , 84(5):1173-1183.
Niu YL, Li C, Zhang GY. Blocking daxx trafficking attenuates neuronal cell death following ischemia/reperfusion in rat hippocampus CA1 region[J]. Arch Biochem Biophys, 2011, 515(1-2):89-98.
Turkmen S, Cekic Gonenc O, Karaca Y, et al. The effect of ethyl pyruvate and N-acetylcysteine on ischemia-reperfusion injury in an experimental model of ischemic stroke[J]. Am J Emerg Med, 2016, 34(9):1804-1807.
Sekhon B, Sekhon C, Khan M, et al. N-acetyl cysteine protects against injury in a rat model of focal cerebral ischemia[J]. Brain Res, 2003, 971(1):1-8.
Komakula S, Bhatia R, Sahib A, et al. Safety and efficacy of N-acetylcysteine (NAC) as an adjunct to standard treatment in patients with acute ischemic stroke: a randomized controlled pilot trial (NACTLYS) [J]. Sci Rep, 2024, 14(1):1103.
Sun YY, Zhu HJ, Zhao RY, et al. Remote ischemic conditioning attenuates oxidative stress and inflammation via the Nrf2/HO-1 pathway in MCAO mice[J]. Redox Biol, 2023, 66:102852.
Cepaityte D, Leivaditis K, Varouktsi G, et al. N-Acetylcysteine: more than preventing contrast-induced nephropathy in uremic patients-focus on the antioxidant and anti-inflammatory properties[J]. Int Urol Nephrol, 2023 , 55(6):1481-1492.
Kho AR, Choi BY, Kim JH, et al. Prevention of hypoglycemia-induced hippocampal neuronal death by N-acetyl-L-cysteine (NAC) [J]. Amino Acids, 2017, 49(2):367-378.
Choi BY, Kim IY, Kim JH, et al. Decreased cysteine uptake by EAAC1 gene deletion exacerbates neuronal oxidative stress and neuronal death after traumatic brain injury[J]. Amino Acids, 2016 , 48(7):1619-1629.
Zhang Z, Yan J, Taheri S,et al. Hypoxia-inducible factor 1 contributes to N-acetylcysteine's protection in stroke[J]. Free Radic Biol Med, 2014 ,68:8-21.
Kunze R, Zhou W, Veltkamp R, et al. Neuron-specific prolyl-4-hydroxylase domain 2 knockout reduces brain injury after transient cerebral ischemia[J]. Stroke, 2012, 43(10):2748-2756.
Smith CJ, Emsley HC, Gavin CM, et al. Peak plasma interleukin-6 and other peripheral markers of inflammation in the first week of ischaemic stroke correlate with brain infarct volume, stroke severity and long-term outcome[J]. BMC Neurol, 2004 , 4:2. DOI: 10.1186/1471-2377-4-2http://dx.doi.org/10.1186/1471-2377-4-2.
Intiso D, Zarrelli MM, Lagioia G, et.al. Tumor necrosis factor alpha serum levels and inflammatory response in acute ischemic stroke patients[J]. Neurol Sci, 2004 , 24(6):390-396.
步霄,贾师捷,周叶,等.急性缺血性脑卒中患者血清CRP、TNF-α、IL-1β、HIF-1α、NSE、SAA对神经功能损伤的诊断价值[J]. 广东医学, 2021,42(1): 90-95.
Bu X,Jia SJ,Zhou Y,et al. The predicted significances of serum CRP, TNF-α, IL-1β, HIF-1α, NSE and SAA for patients with acute ischemic stroke[J]. Guangdong Med J,2021,42(1): 90-95.
Omara FO, Blakley BR, Bernier J, et al. Immunomodulatory and protective effects of N-acetylcysteine in mitogen-activated murine splenocytes in vitro[J]. Toxicology, 1997, 116(1-3):219-226.
Khan M, Sekhon B, Jatana M, et al. Administration of N-acetylcysteine after focal cerebral ischemia protects brain and reduces inflammation in a rat model of experimental stroke[J]. J Neurosci Res, 2004, 76(4):519-527.
Chen G, Shi J, Hu Z, et al. Inhibitory effect on cerebral inflammatory response following traumatic brain injury in rats: a potential neuroprotective mechanism of N-acetylcysteine[J]. Mediators Inflamm, 2008;2008:716458.
Wang Q, Zhang X, Ding Q, et al. Limb remote postconditioning alleviates cerebral reperfusion injury through reactive oxygen species-mediated inhibition of delta protein kinase C in rats[J]. Anesth Analg, 2011 , 113(5):1180-1187.
Mass H, Pirazzi B, Gonzalez P, et al. N-acetylcysteine diminishes injury induced by balloon angioplasty of the carotid artery in rabbits[J]. Biochem Biophys Res Commun, 1995, 215(2):613-618.
Chen YC, Ma NX, Pei ZF, et al. A neuroD1 AAV-based gene therapy for functional brain repair after ischemic injury through in vivo astrocyte-to-neuron conversion[J]. Mol Ther, 2020, 28(1):217-234.
Cramer SC, Shah R, Juranek J, et al. Activity in the peri-infarct rim in relation to recovery from stroke[J]. Stroke, 2006, 37(1):111-115.
Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour[J]. Nat Rev Neurosci, 2009 , 10(12):861-872.
Zong P, Feng J, Yue Z, et al. Functional coupling of TRPM2 and extrasynaptic NMDARs exacerbates excitotoxicity in ischemic brain injury[J]. Neuron, 2022 , 110(12):1944-1958.
Johnson GA, Krishnamoorthy RR, Stankowska DL. Modulating mitochondrial calcium channels (TRPM2/MCU/NCX) as a therapeutic strategy for neurodegenerative disorders[J]. Front Neurosci, 2023, 17:1202167.
Hong DK, Kho AR, Lee SH, et al. Transient receptor potential melastatin 2 (TRPM2) inhibition by antioxidant, n-Acetyl-l-Cysteine, reduces global cerebral ischemia-induced neuronal death[J]. Int J Mol Sci, 2020, 21(17):6026.
Li Y, Wang Y, Yang W, et al. ROS-responsive exogenous functional mitochondria can rescue neural cells post-ischemic stroke[J]. Front Cell Dev Biol, 2023, 11:1207748.
Basha RH, Priscilla DH. An in vivo and in vitro study on the protective effects of N-acetylcysteine on mitochondrial dysfunction in isoproterenol treated myocardial infarcted rats[J]. Exp Toxicol Pathol, 2013,65(1-2):7-14.
Cocco T, Sgobbo P, Clemente M, et al. Tissue-specific changes of mitochondrial functions in aged rats: effect of a long-term dietary treatment with N-acetylcysteine[J]. Free Radic Biol Med, 2005, 38(6):796-805.
Ali M, Tabassum H, Alam MM, et al. N-acetyl-L-cysteine ameliorates mitochondrial dysfunction in ischemia/reperfusion injury via attenuating Drp-1 mediated mitochondrial autophagy[J]. Life Sci, 2022, 293:120338.
Lakhan SE, Kirchgessner A, Tepper D, et al. Matrix metalloproteinases and blood-brain barrier disruption in acute ischemic stroke[J]. Front Neurol, 2013, 4:32.
黄婷,陈波,曾昭明. VEGF基因修饰人骨髓间充质干细胞对脑出血大鼠早期脑水肿的影响[J]. 四川大学学报(医学版),2020,51(5):622-629.
Huang T, Chen B, Zeng ZM. VEGF-transfected hBMSCs aggravate early brain edema in cerebral hemorrhage rats[J]. J Sichuan Univ, 2020, 51(5): 622-629.
Galis ZS, Asanuma K, Godin D, et al. N-acetyl-cysteine decreases the matrix-degrading capacity of macrophage-derived foam cells: new target for antioxidant therapy?[J]. Circulation, 1998, 97(24):2445-2453.
Dwir D, Cabungcal JH, Xin L, et al. Timely N-acetyl-cysteine and environmental enrichment rescue oxidative stress-induced parvalbumin interneuron impairments via MMP9/RAGE pathway: a translational approach for early intervention in psychosis[J]. Schizophr Bull, 2021, 47(6):1782-1794.
Gibson KR, Winterburn TJ, Barrett F, et al. Therapeutic potential of N-acetylcysteine as an antiplatelet agent in patients with type-2 diabetes[J]. Cardiovasc Diabetol, 2011, 10:43.
Martinez de Lizarrondo S, Gakuba C, Herbig BA, et al. Potent thrombolytic effect of N-acetylcysteine on arterial thrombi[J]. Circulation, 2017 , 136(7):646-660.
0
Views
12
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution