浏览全部资源
扫码关注微信
1.贵州大学药学院,贵州 贵阳 550025
2.西南特色药用生物资源开发利用教育部工程研究中心,贵州 贵阳 550025
3.贵州省三穗县人民医院,贵州 凯里 556000
WANG Lu; E-mail: wanglu7007@163.com
Published:20 March 2024,
Received:05 January 2024,
Accepted:08 March 2024
扫 描 看 全 文
何贤芳,王万林,王鸿颖等.艾纳香油通过NF-κB非经典信号影响花生四烯酸代谢缓解LPS所致巨噬细胞的炎症反应[J].中山大学学报(医学科学版),2024,45(02):216-225.
HE Xianfang,WANG Wanlin,WANG Hongying,et al.Blumea balsamifera (L.) DC Oil Alleviates LPS-Induced Inflammatory Response in Macrophages by Affecting Arachidonic Acid Metabolism Via NF-κB Nonclassical Pathway[J].Journal of Sun Yat-sen University(Medical Sciences),2024,45(02):216-225.
何贤芳,王万林,王鸿颖等.艾纳香油通过NF-κB非经典信号影响花生四烯酸代谢缓解LPS所致巨噬细胞的炎症反应[J].中山大学学报(医学科学版),2024,45(02):216-225. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20240312.001.
HE Xianfang,WANG Wanlin,WANG Hongying,et al.Blumea balsamifera (L.) DC Oil Alleviates LPS-Induced Inflammatory Response in Macrophages by Affecting Arachidonic Acid Metabolism Via NF-κB Nonclassical Pathway[J].Journal of Sun Yat-sen University(Medical Sciences),2024,45(02):216-225. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20240312.001.
目的
2
本文旨在探讨艾纳香油(BBO)通过核转录因子κB(NF-κB)非经典通路影响花生四烯酸(AA)代谢通路发挥抗炎作用。
方法
2
采用豚鼠离体回肠法检测BBO对慢反应物质(SRS-A)生成的影响,ELISA法检测BBO对脂多糖(LPS) 诱导巨噬细胞前列腺素E
2
(PGE
2
)及白三烯 B
4
(LTB
4
)产生的影响,qRT-PCR检测BBO对LPS诱导巨噬细胞
COX-2、5-LOX、FLAP
和
RelB
表达的影响,Western blot检测BBO对NF-κB非经典通路蛋白肿瘤坏死因子受体作用因子3(TRAF3)、肿瘤坏死因子受体作用因子2(TRAF2)、NF-κB 诱导激酶(NIK)、p100和RelB浓度的影响。
结果
2
在1mg·mL
-1
的BBO药物浓度下减弱了豚鼠回肠的收缩张力(
P
<0.001),对SRS-A的生成抑制率达到65.34%;与LPS模型组相比,BBO在40-80 μg· mL
-1
浓度下降低AA代谢通路中PGE
2
(
P
<
0.05)和LTB
4
(
P
<
0.05)的浓度,降低
COX-2
(
P
<
0.05)、
5-LOX
(
P
<
0.05)和
FLAP
(
P
<
0.05)的表达;此外,40-80 μg· mL
-1
浓度下BBO还降低LPS导致的NF-κB非经典通路中TRAF3(
P
<
0.05)、TRAF2(
P
<
0.05)和NIK(
P
<
0.05)的浓度,进一步抑制p100蛋白的磷酸化(
P
<
0.05),同时抑制转录因子
RelB
的表达(
P
<
0.05)和RelB蛋白的水平(
P
<
0.05),而BBO自身不引起这些基因与蛋白的变化。
结论
2
BBO可能通过抑制NF-κB非经典信号中调节蛋白TRAF3和TRAF2,转录因子RelB的浓度,造成NIK蛋白的诱导激酶作用受到抑制,进一步抑制了p100蛋白的磷酸化及其与转录因子RelB的结合,从而影响到下游AA通路中重要限速酶
COX-2
、
5-LOX
和
FLAP
的表达与炎症介质PGE
2
和LTB
4
的水平发挥抗炎作用。
Objective
2
To study the anti-inflammatory effects of
Blumea balsamifera
(L.) DC oil (BBO) based on nuclear factor kappa-B (NF-κB) nonclassical and arachidonic acid (AA) pathway.
Methods
2
Effects of BBO on the production of slow reacting substance of anaphylaxis (SRS-A) were detected by the ileal smooth muscle method. The contents of prostaglandin E
2
(PGE
2
) and leukotriene B
4
(LTB
4
) in lipopolysaccharides (LPS) -induced macrophages were detected by ELISA kit. The expression of
COX-2, 5-LOX, FLAP
and
RelB
were detected by qRT-PCR. Western blot was performed to detect the effects of BBO on the level of NF-κB nonclassical pathway proteins TNF receptor associated factor 3 (TRAF3), TNF receptor associated factor 2 (TRAF2), NF-κB-inducing kinase (NIK), p100 and RelB.
Results
2
The contractile tension of guinea pig ileum was reduced (
P
<
0.001), and the SRS-A production inhibition rate reached 65.34% at 1mg·mL
-1
BBO concentration. Compared with LPS group, BBO reduced the concentrations of PGE
2
(
P
<
0.05) and LTB
4
(
P
<
0.05)
,
and decreased the expressions of
COX-2
(
P
<
0.05)
, 5-LOX
(
P
<
0.05) and
FLAP
(
P
<
0.05) in AA pathway at concentrations of 40-80 μg·mL
-1
. Moreover, 40-80 μg·mL
-1
BBO decreased the concentrations of TRAF3 (
P
<
0.05), TRAF2 (
P
<
0.05), and NIK (
P
<
0.05), and further inhibited the phosphorylation of p100 (
P
<
0.05), as well as the level of the transcription factor RelB in genes (
P
<
0.05) and proteins (
P
<
0.05) in nonclassical NF-κB pathway, whereas BBO did not cause such changes.
Conclusion
2
BBO may potentially exert its anti-inflammatory effects by suppressing the regulatory proteins TRAF3 and TRAF2 and the transcription factor RelB in NF-κB nonclassical pathway. The inhibitory action extending to the induction kinase function of NIK, further hindering the phosphorylation of p100 and its binding with the transcription factor RelB. Consequently, downstream elements in the AA pathway, including the pivotal rate-limiting enzymes
COX-2, 5-LOX
and
FLAP
, were altered. This modulation influences the levels of inflammatory mediators such as PGE
2
and LTB
4
.
艾纳香油脂多糖NF-κB非经典通路花生四烯酸代谢抗炎作用
Blumea balsamifera (L.) DC oillipopolysaccharidesnonclassical NF-κB pathwayarachidonic acid metabolismanti-inflammatory effect
Zhang Q, Lenardo MJ, Baltimore D. 30 years of NF-κB: a blossoming of relevance to human pathobiology[J]. Cell, 2017, 168(1-2):37-57.
Wang Q, Liu T, Koci M, et al. Chlorogenic acid alleviated AFB1-induced hepatotoxicity by regulating mitochondrial function, activating Nrf2/HO-1, and inhibiting noncanonical NF-κB signaling pathway[J]. Antioxidants (Basel), 2023, 12(12):2027.
SUN S. The non-canonical NF-κB pathway in immunity and inflammation[J]. Nat Rev Immunol, 2017, 17(9):545-558.
崔丽丽. 12/15-LOX花生四烯酸代谢通路在脑梗死继发性脑损伤中的作用及氧化苦参碱治疗对脑梗死12/15-LOX通路的影响 [D]. 河北医科大学, 2013.
Cui LL. The role of 12/15-LOX pathway in cerebral ischemia and the effect of oxymatrine treatment on 12/15-LOX pathway[D]. Hebei Medical University, Hebei 2013.
Powell WS. Eicosanoid receptors as therapeutic targets for asthma[J]. Clin Sci (Lond), 2021, 135(16): 1945-1980.
Yagami T, Yamamoto Y, Koma H. Physiological and pathological roles of 15-Deoxy-Δ12,14-prostaglandin J2 in the central nervous system and neurological diseases[J]. Mol Neurobiol, 2018, 55(3):2227-2248.
蔡亚玮, 刘建宏, 马宁. 花生四烯酸靶向代谢组学在炎症中的研究现状[J]. 中国临床药理学杂志, 2021, 37(19):2721-2723;+2728.
Cai YW, Liu JH, Ma N. Research status of arachidonic acid-targeted metabonomics in inflammation[J]. Chin J Clin Pharmacol, 2021, 37(19):2721-2723;+2728.
Löfgren L, Forsberg GB, Davidsson P, et al. Development of a highly sensitive liquid chromatography-mass spectrometry method to quantify plasma leukotriene E4 and demonstrate pharmacological suppression of endogenous 5-LO pathway activity in man[J]. Prostag Oth Lipid M, 2020, 150:106463.
Qahtani SYA. Efficacy and safety of intravenous leukotriene receptor antagonists in acute asthma[J]. Am J Med Sci, 2023, 366(1):22-26.
Yang H, Gao Y, Long L, et al. Antibacterial effect of Blumea balsamifera (L.) DC. essential oil against Staphylococcus aureus[J]. Arch Microbiol, 2021, 203(7):3981-3988.
范东生, 李玲, 王可可, 等. 艾纳香化学成分及药理活性的研究进展[J]. 中国药房, 2022, 33(10):1274-1280.
Fan DS, Li N, Wang KK, et al. Research progress on chemical constituents and pharmacological activities of Blumea balsamifera[J]. Chin Pharm, 2022, 33(10):1274-1280.
Zhang B, Tang M, Zhang W, et al. Chemical composition of Blumea balsamifera and Magnolia sieboldii essential oils and prevention of UV-B radiation-induced skin photoaging[J]. Nat Prod Res, 2021, 35(24):5977-5980.
王万林, 高月, 廖加美, 等. 艾纳香油对NF-κB及Nrf2/HO-1信号通路的作用研究[J]. 畜牧兽医学报, 2021, 52(4):976-986.
Wang WL, Gao Y, Liao JM, et al. Effect of Blumea balsamifera (L.) Dc oil on NF-kB and Nrf2/HO-1 signal pathway[J]. Chin J Anim Vet Sci, 2021, 52(4):976-986.
廖加美, 蔡亚玲, 彭俊超, 等. 左旋芳樟醇和β-石竹烯对鸡血管内皮细胞炎性损伤的影响 [J]. 石河子大学学报(自然科学版), 2022, 40(1):34-40.
Lioa JM, Cai YL, Peng JC, et al. The effect of (-)-Linalool and β-caryophyllene on inflammatory injury otchicken vascular endothelial cells[J]. J Shihezi Univ (Nat Sci), 2022, 40(1):34-40.
李爽, 于庆海, 初正云. 合成鱼腥草素的抗炎作用及其机制[J]. 中国药理学通报, 1998, (5):442-444.
Li S, Yu QH, Chu ZY. Studies on the anti-inflammatory effect and mechanism of houttuyninum[J]. Chin Pharacol Bull, 1998 (5):442-444.
郭忻, 冯怡, 符胜光, 等. 培本方抗变态反应的研究[J]. 中成药, 1997 (12):32-33.
Gui Q, Feng Y, Fu SG, et al. Study on anti-allergic reaction of Peibenfang[J]. Chin Tradit Pat Med, 1997 (12):32-33.
江涛, 徐为人. 茶多酚抗过敏作用的研究[J]. 中药药理与临床, 1999 (2):20-22.
Jiang T, Xu WR. Study on anti-allergic effect of tea polyphenols[J]. Pharmacol Clin Chin Mater Med, 1999 (2):20-22.
严能兵, 罗鸿. 白三烯的研究进展与临床意义[J]. 国际检验医学杂志, 2014, 35(6):721-723.
Yan NB, Luo H. Research progress and clinical significance of leukotriene[J]. Int J Lab Med, 2014, 35(6):721-723.
Rood KM, Patel N, DeVengencie IM, et al. Aspirin modulates production of pro-inflammatory and pro-resolving mediators in endothelial cells[J]. PLoS One, 2023, 18(4):e0283163.
Dahlke P, Peltner LK, Jordan PM, et al. Differential impact of 5-lipoxygenase-activating protein antagonists on the biosynthesis of leukotrienes and of specialized pro-resolving mediators[J]. Front Pharmacol, 2023, 14:1219160.
Sirois P. Leukotrienes: one step in our understanding of asthma[J]. Respir Investig, 2019, 57(2):97-110.
Jie Z, Ko CJ, Wang H, et al. Microglia promote autoimmune inflammation via the noncanonical NF-κB pathway[J]. Sci Adv, 2021, 7(36):eabh0609.
Chatterjee B, Roy P, Sarkar UA, et al. Immune differentiation regulator p100 tunes NF-κB responses to TNF[J]. Front Immunol, 2019, 10:997.
Bearoff F, Dhavale D, Kotzbauer P, et al. Aggregated alpha-synuclein transcriptionally activates pro-inflammatory canonical and non-canonical NF-κB signaling pathways in peripheral monocytic cells[J]. Mol Immunol, 2023, 154:1-10.
蔡亚玲, 廖加美, 彭俊超, 等. 艾纳香油中抗炎成分的筛选及其对炎性因子的影响[J]. 天然产物研究与开发, 2021, 33(3):402-409.
Cai YL, Liao JM, Peng JC, et al. Screening of anti-inflammatory substances from Blumea balsamifera (L.) DC. oil and their effects on inflammatory factors [J]. Nat Prod Res Dev, 2021, 33(3):402-409.
刘转转. 黄芩苷通过NF-κB非经典通路调控HOKs的MASPIN和IKKα的表达[D]. 山西医科大学, 2020.
Liu ZZ. Baicalin regulates MASPIN and IKKa expression of HOKs through NF-kB non-classical pathway[D]. Shanxi Medical University, Shanxi 2020.
张淑华. 初步探讨黄芩苷对LPS诱导的RAW264.7巨噬细胞非经典NF-κB信号通路调控作用[D]. 广东医科大学, 2020.
Zhang SH. Preliminary study on the effect of baicalin on non-canonical NF-kB signaling pathway of LPS-induced RAW264.7 macrophages[D]. Guangdong Medical University, Guangdong 2020.
谢雪艳, 李天珍, 王万林, 等. 不同产源艾纳香油化学成分及其抗炎活性研究[J]. 中药新药与临床药理, 2019, 30(9):1069-1076.
Xie XY, Li TZ, Wang WL, et al. Analysis of chemical constituents and anti-inflammatory activity of Blumea balsamifera oil from different sources[J]. Tradit Chin Drug Res Clin Pharmacol, 2019, 30(9):1069-1076.
0
Views
12
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution