浏览全部资源
扫码关注微信
1.南方医科大学第二临床医学院,广东 广州 510280
2.广东省第二人民医院影像科,广东 广州 510317
MA Xiaofen, E-mail: Xiaofenma12@163.com
TIAN Junzhang; E-mail: tianjunzhang2015@163.com
Published:20 May 2024,
Received:02 February 2024,
Accepted:22 April 2024
扫 描 看 全 文
吴草军,傅世舜,江桂华等.伴有童年创伤的重症抑郁患者异常全脑功能连接:一项静息态功能磁共振研究[J].中山大学学报(医学科学版),2024,45(03):420-428.
WU Caojun,FU Shishun,JIANG Guihua,et al.Abnormal Global Brain Functional Connectivity in MDD Patients with Childhood Trauma: A Resting-State fMRI Study[J].Journal of Sun Yat-sen University(Medical Sciences),2024,45(03):420-428.
吴草军,傅世舜,江桂华等.伴有童年创伤的重症抑郁患者异常全脑功能连接:一项静息态功能磁共振研究[J].中山大学学报(医学科学版),2024,45(03):420-428. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20240424.001.
WU Caojun,FU Shishun,JIANG Guihua,et al.Abnormal Global Brain Functional Connectivity in MDD Patients with Childhood Trauma: A Resting-State fMRI Study[J].Journal of Sun Yat-sen University(Medical Sciences),2024,45(03):420-428. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20240424.001.
目的
2
童年创伤(CT)被认为是成年后发展为重度抑郁(MDD)的主要危险因素之一。然而,伴有CT的MDD(CT-MDD)患者的神经基础仍然知之甚少。因此,本研究的目的是探讨CT-MDD患者静息态全脑功能连接(FC)。
方法
2
对34名CT-MDD患者和34名健康对照组进行静息态功能磁共振扫描。进行全脑体素水平度中心性(DC)分析,选取两组间显著差异的脑区作为感兴趣区(ROI),进一步计算全脑FC。随后,将异常脑区DC, FC值与临床量表进行相关性分析。
结果
2
CT-MDD组右侧额中回(MFG)的DC值高于健康对照组。基于种子点的脑功能连接分析发现,与健康对照组相比,CT-MDD组右侧MFG与右内侧前额叶和左侧楔前叶之间的FC增加(
P
<
0.05)。此外,右侧MFG的DC值与CT严重程度相关。
结论
2
我们的结果表明,以右侧MFG作为ROI,其与默认网络(DMN)中的两个重要脑区右内侧前额叶和左侧楔前叶之间的FC增加,这可能表明CT-MDD患者的认知执行网络与DMN之间的同步性增加。这些发现可能为深入了解CT-MDD的病理生理机制提供了见解。
Objective
2
Childhood trauma (CT) is considered one of the major risk factors for developing major depressive disorder (MDD) in adulthood. However, the neural basis of MDD patients with CT (CT-MDD) remains poorly understood. Therefore, the objective of our study is to explore the resting-state global brain functional connectivity (FC) in CT-MDD.
Methods
2
A total of 34 CT-MDD and 34 healthy controls performed resting-state fMRI. Whole-brain voxel-level degree centrality (DC) analysis was performed, and the brain regions with significant differences between the two groups were selected as region of interest (ROI) for further estimating the global brain FC. Subsequently, correlation analysis was performed between DC values, FC values in abnormal brain areas and clinical characteristics.
Results
2
The CT-MDD group showed increased DC value of the right middle frontal gyrus (MFG) compared with the healthy controls. Seed-based FC revealed that the CT-MDD group showe
d increased connections between the left precuneus and the right MFG or the right medial prefrontal cortex, relative to healthy controls (threshold at
P
<
0.05). Additionally, the DC value of the right MFG was correlated with the severity of CT.
Conclusion
2
Our results show the increased FC between the left precuneus and the ROI (right MFG) as well as the right medial prefrontal cortex, which are two important brain regions within the default mode network (DMN), and might suggest increased synchronism between the cognitive executive networks and DMN in CT-MDD. These findings may provide insights into the pathophysiological mechanisms underlying CT-MDD.
童年创伤重症抑郁度中心性功能连接默认网络
childhood traumamajor depressive disorderdegree centralityfunctional connectivitydefault mode network
Huang Y, Wang Y, Wang H, et al. Prevalence of mental disorders in China: a cross-sectional epidemiological study[J]. Lancet Psychiatry, 2019, 6(3): 211-224.
Brundtland GH. From the world health organization. mental health: new understanding, new hope[J]. JAMA, 2001, 286(19): 2391.
Otte C, Gold SM, Penninx BW, et al. Major depressive disorder[J]. Nat Rev Dis Primers, 2016, 2: 16065.
Morgan C, Fisher H. Environment and schizophrenia: environmental factors in schizophrenia: childhood trauma--a critical review[J]. Schizophr Bull, 2007, 33(1): 3-10.
Treatment efficacy and effectiveness in adults with major depressive disorder and childhood trauma history: a systematic review and meta-analysis[J]. Lancet Psychiatry, 2022, 9(11): 860-873.
Yang JZ, Kang CY, Yuan J, et al. Effect of adverse childhood experiences on hypothalamic-pituitary-adrenal (HPA) axis function and antidepressant efficacy in untreated first episode patients with major depressive disorder[J]. Psychoneuroendocrinology, 2021, 134: 105432.
Shea A, Walsh C, Macmillan H, et al. Child maltreatment and HPA axis dysregulation: relationship to major depressive disorder and post traumatic stress disorder in females[J]. Psychoneuroendocrinology, 2005, 30(2): 162-178.
Heim C, Newport DJ, Mletzko T, et al. The link between childhood trauma and depression: insights from HPA axis studies in humans[J]. Psychoneuroendocrinology, 2008, 33(6): 693-710.
Gillespie ML, Rao U. Grant report on the effects of childhood maltreatment on neurocircuitry in adolescent depression[J]. J Psychiatr Brain Sci, 2020, 5: e200016.
Tunnard C, Rane LJ, Wooderson SC, et al. The impact of childhood adversity on suicidality and clinical course in treatment-resistant depression[J]. J Affect Disord, 2014, 152-154: 122-130.
Klein DN, Arnow BA, Barkin JL, et al. Early adversity in chronic depression: clinical correlates and response to pharmacotherapy[J]. Depress Anxiety, 2009, 26(8): 701-710.
Wu B, Li X, Zhou J, et al. Altered whole-brain functional networks in drug-naïve, first-episode adolescents with major depression disorder[J]. J Magn Reson Imaging, 2020, 52(6): 1790-1798.
Chen J, Luo Q, Li Y, et al. Intrinsic brain abnormalities in female major depressive disorder patients with childhood trauma: a resting-state functional magnetic resonance imaging study[J]. Front Neurosci, 2022, 16: 930997.
He C, Fan D, Liu X, et al. Insula network connectivity mediates the association between childhood maltreatment and depressive symptoms in major depressive disorder patients[J]. Transl Psychiatry, 2022, 12(1): 89.
Quinn ME, Stange JP, Jenkins LM, et al. Cognitive control and network disruption in remitted depression: a correlate of childhood adversity[J]. Soc Cogn Affect Neurosci, 2018, 13(10): 1081-1090.
Fadel E, Boeker H, Gaertner M, et al. Differential alterations in resting state functional connectivity associated with depressive symptoms and early life adversity[J]. Brain Sci, 2021, 11(5):591.
Sha Z, Wager TD, Mechelli A, et al. Common dysfunction of large-scale neurocognitive networks across psychiatric disorders[J]. Biol Psychiatry, 2019, 85(5): 379-388.
Joyce KE, Laurienti PJ, Burdette JH, et al. A new measure of centrality for brain networks[J]. PLoS One, 2010, 5(8): e12200.
Zhou W, Yuan Z, Yingliang D, et al. Differential patterns of dynamic functional connectivity variability in major depressive disorder treated with cognitive behavioral therapy[J]. J Affect Disord, 2021, 291: 322-328.
Zheng R, Chen Y, Jiang Y, et al. Abnormal voxel-wise whole-brain functional connectivity in first-episode, drug-naïve adolescents with major depression disorder[J]. Eur Child Adolesc Psychiatry, 2023, 32(7): 1317-1327.
孙宇, 李平, 吕丹, 等. 抑郁障碍患者静息态功能连接强度研究[J]. 中国神经精神疾病杂志, 2023, 49(9): 527-533.
Sun Y, Li P, Lv D, et al. Resting-state functional connectivity strength in patients with major depressive disorder[J]. Chin J Nerv Ment Dis, 2023, 49(9): 527-533.
Li C, Lv G, Liu B, et al. Impact of childhood maltreatment on adult resilience[J]. BMC Psychiatry, 2023, 23(1): 637.
Lu S, Gao W, Wei Z, et al. Intrinsic brain abnormalities in young healthy adults with childhood trauma: a resting-state functional magnetic resonance imaging study of regional homogeneity and functional connectivity[J]. Aust N Z J Psychiatry, 2017, 51(6): 614-623.
Friston KJ, Williams S, Howard R, et al. Movement-related effects in fMRI time-series[J]. Magn Reson Med, 1996, 35(3): 346-355.
Takeuchi H, Taki Y, Nouchi R, et al. Degree centrality and fractional amplitude of low-frequency oscillations associated with Stroop interference[J]. Neuroimage, 2015, 119: 197-209.
Guo M, Ren Y, Yu H, et al. Alterations in degree centrality and functional connectivity in Parkinson's disease patients with freezing of gait: a resting-state functional magnetic resonance imaging study[J]. Front Neurosci, 2020, 14: 582079.
Power JD, Fair DA, Schlaggar BL, et al. The development of human functional brain networks[J]. Neuron, 2010, 67(5): 735-748.
Kong C, Xu D, Wang Y, et al. Amplitude of low-frequency fluctuations in multiple-frequency bands in patients with intracranial tuberculosis: a prospective cross-sectional study[J]. Quant Imaging Med Surg, 2022, 12(8): 4120-4134.
Liu Y, Zhang J, Zhang M, et al. Abnormal brain gray matter volume in patients with major depressive disorder: associated with childhood trauma?[J]. J Affect Disord, 2022, 308: 562-568.
Cao Y, Sun H, Lizano P, et al. Effects of inflammation, childhood adversity, and psychiatric symptoms on brain morphometrical phenotypes in bipolar II depression[J]. Psychol Med, 2024, 54(4): 775-784.
Xu Z, Zhang J, Wang D, et al. Altered brain function in drug-naïve major depressive disorder patients with early-life maltreatment: a resting-state fMRI study[J]. Front Psychiatry, 2019, 10: 255.
Wang X, Cheng B, Roberts N, et al. Shared and distinct brain fMRI response during performance of working memory tasks in adult patients with schizophrenia and major depressive disorder[J]. Hum Brain Mapp, 2021, 42(16): 5458-5476.
Wang X, Blain SD, Wei D, et al. The role of frontal-subcortical connectivity in the relation between coping styles and reactivity and downregulation of negative emotion[J]. Brain Cogn, 2020, 146: 105631.
Akiki TJ, Averill CL, Abdallah CG. A network-based neurobiological model of PTSD: evidence from structural and functional neuroimaging studies[J]. Curr Psychiatry Rep, 2017, 19(11): 81.
Kaiser RH, Andrews-Hanna JR, Wager TD, et al. Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity[J]. JAMA Psychiatry, 2015, 72(6): 603-611.
Jacobs RH, Jenkins LM, Gabriel LB, et al. Increased coupling of intrinsic networks in remitted depressed youth predicts rumination and cognitive control[J]. PLoS One, 2014, 9(8): e104366.
Belleau EL, TaWBolton, Kaiser RH, et al. Resting state brain dynamics: associations with childhood sexual abuse and major depressive disorder[J]. Neuroimage Clin, 2022, 36: 103164.
Suo X, Lei D, Li K, et al. Disrupted brain network topology in pediatric posttraumatic stress disorder: a resting-state fMRI study[J]. Hum Brain Mapp, 2015, 36(9): 3677-3686.
Park S-J, Lee D-K, Kim B, et al. The association between Omega-3 fatty acid intake and human brain connectivity in middle-aged depressed women[J]. Nutrients, 2020, 12(8).
Rogachov A, Cheng JC, Hemington KS, et al. Abnormal low-frequency oscillations reflect trait-like pain ratings in chronic pain patients revealed through a machine learning approach[J]. J Neurosci, 2018, 38(33): 7293-7302.
Rakesh D, Kelly C, Vijayakumar N, et al. Unraveling the consequences of childhood maltreatment: deviations from typical functional neurodevelopment mediate the relationship between maltreatment history and depressive symptoms[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2021, 6(3): 329-342.
Tozzi L, Garczarek L, Janowitz D, et al. Interactive impact of childhood maltreatment, depression, and age on cortical brain structure: mega-analytic findings from a large multi-site cohort[J]. Psychol Med, 2020, 50(6): 1020-1031.
Yu M, Linn KA, Shinohara RT, et al. Childhood trauma history is linked to abnormal brain connectivity in major depression[J]. Proc Natl Acad Sci U S A, 2019, 116(17): 8582-8590.
0
Views
2
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution