浏览全部资源
扫码关注微信
1.河南中医药大学,河南 郑州 450046
2.河南中医药大学第一附属医院,河南 郑州 450000
BAI Yanjie;E-mail: baiyj66@126.com
Published:20 July 2024,
Received:22 April 2024,
Accepted:13 June 2024
扫 描 看 全 文
栗文静,白艳杰.针刺调节BDNF/TrkB信号通路改善中枢神经系统疾病的研究进展[J].中山大学学报(医学科学版),2024,45(04):530-538.
LI Wenjing,BAI Yanjie.Research Progress of Acupuncture in Improving Central Nervous System Diseases by Regulating BDNF/TrkB Signaling Pathway[J].Journal of Sun Yat-sen University(Medical Sciences),2024,45(04):530-538.
栗文静,白艳杰.针刺调节BDNF/TrkB信号通路改善中枢神经系统疾病的研究进展[J].中山大学学报(医学科学版),2024,45(04):530-538. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20240617.002.
LI Wenjing,BAI Yanjie.Research Progress of Acupuncture in Improving Central Nervous System Diseases by Regulating BDNF/TrkB Signaling Pathway[J].Journal of Sun Yat-sen University(Medical Sciences),2024,45(04):530-538. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20240617.002.
BDNF/TrkB信号通路作为神经元生长、发育和突触可塑性的关键调节器,广泛参与中枢神经系统疾病的发生发展,如缺血性脑卒中、阿尔茨海默病、帕金森病和脊髓损伤等。研究表明针刺能调节BDNF/TrkB信号通路的活性,对以上疾病具有显著的治疗潜力,其作用机制与参与突触结构重塑,抑制神经细胞凋亡,促进神经发生和突触再生等有关。本文综述了BDNF/TrkB相关信号通路在中枢神经系统疾病中的作用以及针刺对该通路的调控机制,以期为临床治疗提供新思路。未来研究应深入探究针刺对BDNF/TrkB信号通路的精准调控,以开发更高效安全的治疗策略。
As a key regulator of neuronal growth, development and synaptic plasticity, BDNF/ TrkB signaling pathway is widely involved in the occurrence and development of central nervous system diseases, such as ischemic stroke, Alzheimer's disease, Parkinson's disease and spinal cord injury. Studies have shown that acupuncture can regulate the activity of BDNF/TrkB signaling pathway, and has significant therapeutic potential for these diseases. Its mechanism of action is related to participating in synaptic remodeling, inhibiting neuronal apoptosis, and promoting neurogenesis or synaptic regeneration. This article reviews the role of BDNF/TrkB signaling pathway in central nervous system diseases and the regulation mechanism of acupuncture on this pathway, in order to provide new ideas for clinical treatment. Future studies should further explore the precise regulatory mechanism of acupuncture on BDNF/TrkB signaling pathway in order to develop more efficient and safe treatment strategies.
针刺BDNF/TrkB信号通路中枢神经系统疾病缺血性脑卒中阿尔茨海默病帕金森病脊髓损伤作用机制
acupunctureBDNF/TrkB signaling pathwaycentral nervous system diseasesischemic strokeAlzheimer's diseaseParkinson's diseasespinal cord injurymechanism of action
Rothwell J, Antal A, Burke D, et al. Central nervous system physiology [J]. Clin Neurophysiol, 2021, 132(12): 3043-3083.
Wang CS, Kavalali ET, Monteggia LM. BDNF signaling in context: from synaptic regulation to psychiatric disorders [J]. Cell, 2022, 185(1): 62-76.
Eyileten C, Sharif L, Wicik Z, et al. The Relation of the brain-derived neurotrophic factor with microRNAs in neurodegenerative diseases and ischemic stroke [J]. Mol Neurobiol, 2021, 58(1): 329-347.
Zagrebelsky M, Korte M. Are TrkB receptor agonists the right tool to fulfill the promises for a therapeutic value of the brain-derived neurotrophic factor? [J]. Neural Regen Res, 2024, 19(1): 29-34.
Zhu Z H, Jia F, Ahmed W, et al. Neural stem cell-derived exosome as a nano-sized carrier for BDNF delivery to a rat model of ischemic stroke [J]. Neural Regen Res, 2023, 18(2): 404-409.
Lai HC, Chang QY, Hsieh CL. Signal transduction pathways of acupuncture for treating some nervous system diseases [J]. Evid Based Complement Alternat Med, 2019, 2019: 2909632.
Jianyi X, Jinyan XU, Mao H, et al. Scalp acupuncture Yikang therapy on Baihui (GV20), Sishencong (EX-HN1), Zhisanzhen, Niesanzhen improves neurobehavior in young rats with cerebral palsy through notch signaling pathway [J]. J Tradit Chin Med, 2023, 43(2): 337-342.
Shen J, Hao C, Yuan S, et al. Acupuncture alleviates CUMS-induced depression-like behaviors of rats by regulating oxidative stress, neuroinflammation and ferroptosis [J]. Brain Res, 2024, 1826: 148715.
Jin GY, Jin LL, Jin BX, et al. Neural control of cerebral blood flow: scientific basis of scalp acupuncture in treating brain diseases [J]. Front Neurosci, 2023, 17: 1210537.
Miao C, Li X, Zhang Y. Effect of acupuncture on BDNF signaling pathways in several nervous system diseases [J]. Front Neurol, 2023, 14: 1248348.
Arévalo JC, Deogracias R. Mechanisms controlling the expression and secretion of BDNF [J]. Biomolecules, 2023, 13(5): 789.
Tejeda GS, Díaz-Guerra M. Integral characterization of defective BDNF/TrkB signalling in neurological and psychiatric disorders leads the way to new therapies [J]. Int J Mol Sci, 2017, 18(2): 268.
Ferreira FF, Ribeiro FF, Rodrigues RS, et al. Brain-derived neurotrophic factor (BDNF) role in cannabinoid-mediated neurogenesis [J]. Front Cell Neurosci, 2018, 12: 441.
Wang J, Yu H, Li X, et al. A TrkB cleavage fragment in hippocampus promotes depressive-like behavior in mice [J]. Brain Behav Immun, 2024, 119: 56-83.
Niu C, Yue X, An JJ, et al. Genetic dissection of BDNF and TrkB expression in glial cells [J]. Biomolecules, 2024, 14(1): 91.
Jang HJ, Suh PG, Lee YJ, et al. PLCγ1: Potential arbitrator of cancer progression [J]. Adv Biol Regul, 2018, 67: 179-189.
Lee J, Chen X, Nicoll RA. Synaptic memory survives molecular turnover [J]. Proc Natl Acad Sci U S A, 2022, 119(42): e2211572119.
Xiao K, Li Y, Chitwood RA, et al. A critical role for CaMKII in behavioral timescale synaptic plasticity in hippocampal CA1 pyramidal neurons [J]. Sci Adv, 2023, 9(36): eadi3088.
Yasuda R, Hayashi Y, Hell JW. CaMKII: a central molecular organizer of synaptic plasticity, learning and memory [J]. Nat Rev Neurosci, 2022, 23(11): 666-682.
Incontro S, Díaz-Alonso J, Iafrati J, et al. Author correction: The CaMKII/NMDA receptor complex controls hippocampal synaptic transmission by kinase-dependent and independent mechanisms [J]. Nat Commun, 2018, 9(1): 5205.
Li C, Sui C, Wang W, et al. Baicalin attenuates oxygen-glucose deprivation/reoxygenation-induced injury by modulating the BDNF-TrkB/PI3K/Akt and MAPK/Erk1/2 signaling axes in neuron-astrocyte cocultures [J]. Front Pharmacol, 2021, 12: 599543.
Long HZ, Cheng Y, Zhou ZW, et al. PI3K/AKT signal pathway: a target of natural products in the prevention and treatment of Alzheimer's disease and Parkinson's disease [J]. Front Pharmacol, 2021, 12: 648636.
Xu T, Liu J, Li XR, et al. The mTOR/NF-κB pathway mediates neuroinflammation and synaptic plasticity in diabetic encephalopathy [J]. Mol Neurobiol, 2021, 58(8): 3848-3862.
Zhou S, Liu J, Sun Y, et al. Dietary choline metabolite TMAO impairs cognitive function and induces hippocampal synaptic plasticity declining through the mTOR/P70S6K/ 4EBP1 pathway [J]. Food Funct, 2023, 14(6): 2881-2895.
Wolf P, Schoeniger A, Edlich F. Pro-apoptotic complexes of BAX and BAK on the outer mitochondrial membrane [J]. Biochim Biophys Acta Mol Cell Res, 2022, 1869(10): 119317.
Asadi M, Taghizadeh S, Kaviani E, et al. Caspase-3: Structure, function, and biotechnological aspects [J]. Biotechnol Appl Biochem, 2022, 69(4): 1633-1645.
Lin J, Song T, Li C, et al. GSK-3β in DNA repair, apoptosis, and resistance of chemotherapy, radiotherapy of cancer [J]. Biochim Biophys Acta Mol Cell Res, 2020, 1867(5): 118659.
Martin-Vega A, Cobb MH. Navigating the ERK1/2 MAPK Cascade [J]. Biomolecules, 2023, 13(10): 1555.
Gałgańska H, Jarmuszkiewicz W, Gałgański Ł. Carbon dioxide and MAPK signalling: towards therapy for inflammation [J]. Cell Commun Signal, 2023, 21(1): 280.
Wen X, Jiao L, Tan H. MAPK/ERK pathway as a central regulator in vertebrate organ regeneration [J]. Int J Mol Sci, 2022, 23(3): 1464.
Zhao T, Zhou Y, Zhang D, et al. Inhibition of TREM-1 alleviates neuroinflammation by modulating microglial polarization via SYK/p38MAPK signaling pathway after traumatic brain injury [J]. Brain Res, 2024, 1834: 148907.
Suo N, Guo YE, He B, et al. Inhibition of MAPK/ERK pathway promotes oligodendrocytes generation and recovery of demyelinating diseases [J]. Glia, 2019, 67(7): 1320-1332.
Xue W, Zhao Y, Xiao Z, et al. Epidermal growth factor receptor-extracellular-regulated kinase blockade upregulates TRIM32 signaling cascade and promotes neurogenesis after spinal cord injury [J]. Stem Cells, 2020, 38(1): 118-133.
Liu W, Wang X, O'Connor M, et al. Brain-derived neurotrophic factor and its potential therapeutic role in stroke comorbidities [J]. Neural Plast, 2020, 2020: 1969482.
Li Z, Wang H, Xiao G, et al. Recovery of post-stroke cognitive and motor deficiencies by Shuxuening injection via regulating hippocampal BDNF-mediated neurotrophin/Trk signaling [J]. Biomed Pharmacother, 2021, 141: 111828.
Li C, Wang X, Yan J, et al. Cholic acid protects in vitro neurovascular units against oxygen and glucose deprivation-induced injury through the BDNF-TrkB signaling pathway [J]. Oxid Med Cell Longev, 2020, 2020: 1201624.
Gong C, He X, Li G, et al. miR-497-5p promoted neuronal injury in ischemic stroke by inhibiting the BDNF/TrkB/PI3K/Akt pathway [J]. Gen Physiol Biophys, 2024, 43(2): 175-183.
Zhu XQ, Gao D. Naringenin alleviates cognitive dysfunction in rats with cerebral ischemia/reperfusion injury through up-regulating hippocampal BDNF-TrkB signaling: involving suppression in neuroinflammation and oxidative stress [J]. Neuroreport, 2024, 35(4): 216-224.
刘洁, 张建刚, 马登飞. 电针对脑梗死患者血清VEGF/Flt-1、BDNF表达以及临床效果的影响 [J]. 中华中医药学刊, 2023, 42(3): 231-234.
Liu J, Zhang JG, Ma DF. Effect of electroacupuncture on expressions of serum VEGF/Flt-1 and BDNF in patients with cerebral infarction [J]. Chin Arch Tradit Chin Med,2023, 42(3): 231-234.
王琮民, 闫纪琳, 李海涛, 等. 电针对脑梗死大鼠脑组织中BDNF/TrkB/PI3K信号通路的影响 [J]. 中医药导报, 2022, 28(5): 52-56.
Wang CM,Yan JL,Li HT,et al. Effect of electroacupuncture on BDNF/TrkB/Pl3K signal pathway in brain tissue of rats with cerebral infarction [J]. Hunan Guid J Tradit Chin Med Pharmacol,2022, 28(5): 52-56.
余明月, 苏凯奇, 申昕, 等. 电针对脑缺血再灌注学习记忆障碍大鼠海马脑源性神经营养因子转化和突触可塑性的影响[J]. 针刺研究, 2024, 49(4): 391-397.
Yu MY, Su KQ, Shen X, et al. Effect of electroacupuncture on proBDNF/mBDNF and synaptic plasticity in rats with learning and memory impairment after cerebral ischemia-reperfusion[J]. Acupunct Res, 2024, 49(4): 391-397.
苏凯奇, 吕转, 吴明莉, 等. 电针对缺血再灌注后学习记忆障碍大鼠BDNF/TrkB/PI3K/Akt通路的影响及对海马神经元保护作用研究 [J]. 中国全科医学, 2023, 26(33): 4187-4193.
Su KQ, Lu Z, Wu ML, et al. Effect of electroacupuncture on BDNF/TrkB/Pl3K/Akt pathway and hippocampal neuronal protection in rats with learning and memory impairment after ischemia reperfusion [J]. Chin Gen Pract, 2023, 26(33): 4187-4193.
袁洁,高静,苏凯奇,等. 电针对脑缺血再灌注损伤诱导的学习记忆障碍大鼠BDNF/TRKB/CREB信号通路和海马突触可塑性的影响 [J]. 针刺研究,2023,48(9): 843-851.
Yuan J, Gao J, Su KQ, et al. Electroacupuncture improves learning and memory impairment and enhances hippocampal synaptic plasticity through BDNF/TRKB/CREB signaling pathway in cerebral ischemia-reperfusion injury rats [J]. Acupunct Res,2023, 48(9): 843-851.
孙培养,储浩然,李难,等. “通督调神”针刺对脑卒中后抑郁大鼠海马CREB/BDNF/TrkB信号通路的影响 [J]. 中国针灸,2022,42(8):907-913.
Sun PY, Chu HR, Li N, et al. Effect of Tongdu Tiaoshen acupuncture on CREB/BDNF/TrkB signaling pathway of hippocampus in rats with post-stroke depression [J]. Chin Acu-Mox, 2022, 42(8): 907-913.
Xing Y, Li P, Jia Y, et al. Association of inflammatory bowel disease and related medication exposure with risk of Alzheimer's disease: an updated meta-analysis [J]. Front Aging Neurosci, 2022, 14: 1082575.
Bharani KL, Ledreux A, Gilmore A, et al. Serum pro-BDNF levels correlate with phospho-tau staining in Alzheimer's disease [J]. Neurobiol Aging, 2020, 87: 49-59.
Angelucci F, Veverova K, Katonová A, et al. Serum PAI-1/BDNF ratio is increased in Alzheimer's disease and correlates with disease severity [J]. ACS Omega, 2023, 8(39): 36025-36031.
Wang ZH, Xiang J, Liu X, et al. Deficiency in BDNF/TrkB neurotrophic activity stimulates δ-Secretase by upregulating C/EBPβ in Alzheimer's disease [J]. Cell Rep, 2019, 28(3): 655-669.e5.
Wu L, Dong Y, Zhu C, et al. Effect and mechanism of acupuncture on Alzheimer's disease: a review [J]. Front Aging Neurosci, 2023, 15: 1035376.
Li X, Guo F, Zhang Q, et al. Electroacupuncture decreases cognitive impairment and promotes neurogenesis in the APP/PS1 transgenic mice [J]. BMC Complement Altern Med, 2014, 14: 37.
Wang X, Shen F, Kong L, et al. Effects of low frequency electroacupuncture on expression of BDNF in hippocampus of Alzheimer’s disease model rats [J]. Journal of Hubei University of Chinese Medicine, 2015, 17(5): 7-9.
Lin R, Chen J, Li X, et al. Electroacupuncture at the Baihui acupoint alleviates cognitive impairment and exerts neuroprotective effects by modulating the expression and processing of brain-derived neurotrophic factor in APP/PS1 transgenic mice [J]. Mol Med Rep, 2016, 13(2): 1611-1617.
Lin R, Li L, Zhang Y, et al. Electroacupuncture ameliorate learning and memory by improving N-acetylaspartate and glutamate metabolism in APP/PS1 mice [J]. Biol Res, 2018, 51(1): 21.
杨淑荃, 范德辉, 罗孟西, 等. 腹针对轻中度阿尔茨海默病患者认知功能及血清5-HT、BDNF、IGF-1的影响 [J]. 上海针灸杂志, 2023, 42(5): 485-490.
Yang SQ, Fan DH, Luo MX, et al. Effects of abdominal acupuncture on cognitive function and serum 5-HT, BDNF and lGF-1 in patients with mild-to-moderate Alzheimer's disease. [J]. Shanghai J Acu-mox, 2023, 42(5): 485-490.
Simon DK, Tanner CM, Brundin P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology [J]. Clin Geriatr Med, 2020, 36(1): 1-12.
Paterno A, Polsinelli G, Federico B. Changes of brain-derived neurotrophic factor (BDNF) levels after different exercise protocols: a systematic review of clinical studies in Parkinson's disease [J]. Front Physiol, 2024, 15: 1352305.
Kang SS, Zhang Z, Liu X, et al. TrkB neurotrophic activities are blocked by α-synuclein, triggering dopaminergic cell death in Parkinson's disease [J]. Proc Natl Acad Sci U S A, 2017, 114(40): 10773-10778.
阎晨, 刘涛, 宣斐. 基于α-synuclein表达探讨七氟烷对小鼠树突棘状态与学习记忆功能的影响[J]. 遵义医科大学学报,2022,45(4):470-477.
Yan C,Liu T,Xuan F.Effects of Sev of lurane on dendritic spines as well as learning and memory function in mice via α-synuclein[J]. J Zunyi Med Univ,2022,45(4):470-477.
Ding Y, Zhou M, Zheng R, et al. Feruloylated oligosaccharides ameliorate MPTP-induced neurotoxicity in mice by activating ERK/CREB/BDNF/TrkB signalling pathway [J]. Phytomedicine, 2023, 108: 154512.
Lin JG, Chen CJ, Yang HB, et al. Electroacupuncture promotes recovery of motor function and reduces dopaminergic neuron degeneration in rodent models of Parkinson's disease [J]. Int J Mol Sci, 2017, 18(9): 1846.
Zhao Y, Luo D, Ning Z, et al. Electro-acupuncture ameliorated MPTP-induced Parkinsonism in mice via TrkB neurotrophic signaling [J]. Front Neurosci, 2019, 13: 496.
Zhao Y, Zhang Z, Qin S, et al. Acupuncture for Parkinson's disease: efficacy evaluation and mechanisms in the dopaminergic neural circuit [J]. Neural Plast, 2021, 2021: 9926445.
Lee Y, Lee H, Bae CH, et al. Electroacupuncture at GB34 modulates neurogenesis and BDNF-ERK signaling in a mouse model of Parkinson's disease [J]. J Tradit Complement Med, 2023, 13(3): 263-269.
Li X, Wu Q, Xie C, et al. Blocking of BDNF-TrkB signaling inhibits the promotion effect of neurological function recovery after treadmill training in rats with spinal cord injury [J]. Spinal Cord, 2019, 57(1): 65-74.
Chen M, Lin Y, Guo W, et al. BMSC-Derived Exosomes Carrying miR-26a-5p Ameliorate Spinal Cord Injury via Negatively Regulating EZH2 and Activating the BDNF-TrkB-CREB Signaling [J]. Mol Neurobiol, 2024: 1-19.
Li X, Song X, Fang L, et al. Body weight-supported treadmill training ameliorates motoneuronal hyperexcitability by increasing GAD-65/67 and KCC2 expression via TrkB signaling in rats with incomplete spinal cord injury [J]. Neurochem Res, 2022, 47(6): 1679-1691.
Głowacka A, Ji B, Szczepankiewicz AA, et al. BDNF spinal overexpression after spinal cord injury partially protects soleus neuromuscular junction from disintegration, increasing VAChT and AChE transcripts in soleus but not tibialis anterior motoneurons [J]. Biomedicines, 2022, 10(11): 2851.
Tu WZ, Jiang H, Zhang L, et al. Electro-acupuncture at governor vessel improves neurological function in rats with spinal cord injury [J]. Chin J Integr Med, 2017: 1-7.
叶青, 李志刚, 时素华, 等. 督脉电针联合重复经颅磁刺激对脊髓损伤后大鼠脊髓BDNF及其受体TrkB和p75~(NTR)表达的影响 [J]. 针灸临床杂志, 2022, 38(8): 57-65.
Ye Q, Li ZG, Shi SH, et al. Impacts of DU meridian EA combined with r TMS on expressions of BDNF and its receptors of TrkB and p75NTR in SCl rats [J]. Clin J Acu-mox, 2022, 38(8): 57-65.
叶青, 时素华, 姚海江, 等. 基于BDNF-TrkB/proBDNF-p75~(NTR)信号通路探讨电针治疗脊髓损伤的分子机制 [J]. 河南中医, 2023, 43(7): 1100-1106.
Ye Q, Shi SH, Yao HJ, et al. Probe into the molecular mechanism of electroacupunture therapy for spinal cord injury based on the BDNF-TrkB/proBDNF-p75NTR signaling pathway [J]. Henan Tradit Chin Med, 2023, 43(7): 1100-1106.
王镌, 李玥, 蒋伟. 夹脊穴埋线对大鼠脊髓损伤后自噬及BDNF/TrkB通路的调控作用 [J]. 现代中西医结合杂志, 2023, 32(21): 2947-2953.
Wang J, Li Y, Jiang W. Regulation of spinal cord embedding on autophagy and BDNF/TrkB pathway after spinal cord injury in rats [J]. Mod J Integr Tradit Chin West Med, 2023, 32(21): 2947-2953.
0
Views
1
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution