中山大学中山眼科中心//眼科学国家重点实验室,广东 广州510060
苏焜仪,硕士生,研究方向:视网膜新生血管性疾病,E-mail: 1054722531@qq.com
纸质出版日期:2021-03-20,
收稿日期:2020-12-02,
扫 描 看 全 文
苏焜仪,胡安娣娜,陈珠婷等.活体情况下评价载脂蛋白A1对小鼠视网膜血管生成的影响[J].中山大学学报(医学科学版),2021,42(02):177-184.
SU Kun-yi,HU Andina,CHEN Zhu-ting,et al.Evaluation of The Effects of apoA1 on Retinal Angiogenesis of Mice in Vivo[J].Journal of Sun Yat-sen University(Medical Sciences),2021,42(02):177-184.
目的
2
用眼底照相及荧光造影探讨载脂蛋白A1(apoA1)正常生理状态下及缺氧状态下对小鼠视网膜血管生长情况的影响。
方法
2
在正常生理条件(常氧)下,通过
apoA1
+/+
鼠、
apoA1
-/-
鼠与C57/BL6J小鼠对比,分别在第17天末(幼年期)、8 周龄(成年期)、20周龄(中老年期),进行体内实验:①小鼠眼底照相(观察血管形态)及②荧光造影(FFA)(观察血管渗漏情况,分析视网膜平均血管密度、孔隙率及连接点个数);并分别制备它们缺氧条件下的氧诱导的视网膜病变(OIR)模型进行实验:①眼底照相;②荧光眼底血管造影。
结果
2
常氧下,①眼底照相示3种小鼠不同时期视网膜血管形态相似;②FFA提示3种小鼠不同时期毛细血管分布均匀,无明显无灌注区及荧光渗漏等表现。组间无统计学差异(
P
血管密度
=0.59
>
0.05,
P
孔隙率
=0.52
>
0.05);缺氧状态下,①眼底照相示:视网膜主要血管明显迂曲扩张;②FFA示3组均有静脉串珠样改变,毛细血管分布不均,见无灌注区及荧光渗漏等表现。对血管密度、孔隙率和连接点个数进行分析,组间有显著差异(
P
血管密度
=0.001 6
<
0.01,
P
孔隙率
=0.001 9
<
0.01,
P
连接点个数
=0.0013<0.01)。
结论
2
通过小鼠视网膜成像系统在活体情况下发现在生理条件下,
apoA1
基因表达量的多少对小鼠正常视网膜血管生长无影响。缺氧状态下,apoA1表达量增高可使小鼠视网膜无灌注区面积减少,荧光渗漏减少。
Objective
2
Fundus imaging and fluorescein angiography were used to investigate the effect of apoA1 on the growth of retinal blood vessels under physiological environment and hypoxia state.
Methods
2
Under normal physiological conditions, by comparing
apoA1
+ / +
mice and
apoA1
- / -
mice with C57 / BL6J mice, experiments in vivo were conducted at the end of the day 17 (infancy), 8 weeks and 20 weeks, respectively, including: ① mice fundus photography (to observe vascular morphology) and ② fundus fluorescein angiography (FFA) (to observe vascular leakage, and to analyze average retinal vascular density, porosity and numbers of junction points). Their OIR models were prepared respectively for experiments with fundus photography and FFA.
Results
2
Under constant oxygen, fundus photography showed that the retinal blood vessels of the three kinds of mice were similar at different stages; FFA suggested that the capillary distribution of the three kinds of mice was uniform at different stages, and there was no obvious perfusion area and fluorescein leakage. There was no statistical difference between groups (
P
vascular density
=0.59
>
0.05,
P
porosity
=0.52
>
0.05); Under hypoxia state, fundus photography showed that the main retinal vessels were obviously tortuous and dilated; FFA showed that all three groups had venous beaded changes, uneven capillary distribution, but no perfusion area and fluorescein leakage. Analysis of vascular density, porosity, and number of connection points showed there were significant differences between groups (
P
vascular density
=0.001 6
<
0.01,
P
porosity
=0.001 9
<
0.01,
P
number of connection points
=0.001 3
<
0.01).
Conclusions
2
Under physiological conditions, the expression level of
apoA1
gene has no effect on retinal vascular growth. Under hypoxia state, increased apoA1 expression might reduce retinal nonperfusion area and reduce fluorescein leakage.
载脂蛋白A1氧诱导视网膜病变小鼠模型血-视网膜屏障眼底血管造影
apoA1oxygen-induced retinopathy modelblood-retinal barrierfundus fluorescein angiography
Yücel EI, Sahin M. Fenretinide reduces angiogenesis by downregulating CDH5, FOXM1 and eNOS genes and suppressing microRNA-10b[J]. Mol Biol Rep, 2020, 47(3): 1649-1658.
Klein BE, Moss SE, Klein R, et al. The Wisconsin Epidemiologic Study of Diabetic Retinopathy. XIII. Relationship of serum cholesterol to retinopathy and hard exudate[J]. Ophthalmology, 1991, 98(8): 1261-1265.
Raman R, Rani PK, Kulothungan V, et al. Influence of serum lipids on clinically significant versus nonclinically significant macular edema: SN-DREAMS Report number 13[J]. Ophthalmology, 2010, 117(4): 766-772.
Hu A, Luo Y, Li T, Guo X, et al. Low serum apolipoprotein A1/B ratio is associated with proliferative diabetic retinopathy in type 2 diabetes[J]. Graef Arch Clin Exp, 2012, 250(7): 957-962.
Assmann G,Nofer JR. Atheroprotective effects of high-density lipoproteins[J]. Annu Rev Med, 2003, 54: 321-341.
Tran-Dinh A, Diallo D, Delbosc S, et al. HDL and endothelial protection[J]. Brit J Pharmacol, 2013, 169(3): 493-511.
Nicholls SJ, Dusting GJ, Cutri B, et al. Reconstituted high-density lipoproteins inhibit the acute pro-oxidant and proinflammatory vascular changes induced by a periarterial collar in normocholesterolemic rabbits[J]. Circulation, 2005, 111(12): 1543-1550.
O'Connell BJ, Genest J. High-density lipoproteins and endothelial function[J]. Circulation, 2001, 104(16): 1978-1983.
Prosser HC, Ng MK, Bursill CA. The role of cholesterol efflux in mechanisms of endothelial protection by HDL[J]. Curr Opin Lipidol, 2012, 23(3): 182-189.
Alex AF, Alnawaiseh M, Heiduschka P, et al. Retinal fundus imaging in mouse models of retinal diseases[J]. Methods Mol Biol, 2019, 1834: 253-283.
Rubin EM, Ishida BY, Clift SM, et al. Expression of human apolipoprotein A-I in transgenic mice results in reduced plasma levels of murine apolipoprotein A-I and the appearance of two new high density lipoprotein size subclasses[J]. P Natl Acad Sci USA, 1991, 88(2): 434-438.
Berti JA, de Faria EC, Oliveira HC. Atherosclerosis in aged mice over-expressing the reverse cholesterol transport genes[J]. Braz J Med Bio Res, 2005, 38(3): 391-398.
Williamson R, Lee D, Hagaman J, et al. Marked reduction of high density lipoprotein cholesterol in mice genetically modified to lack apolipoprotein A-I[J]. P Natl Acad Sci USA, 1992, 89(15): 7134-7138.
Reimers GJ, Jackson CL, Rickards J, et al. Inhibition of rupture of established atherosclerotic plaques by treatment with apolipoprotein A-I[J]. Cardiovasc Res, 2011, 91(1): 37-44.
Yin K, Liao DF, Tang CK. ATP-binding membrane cassette transporter A1 (ABCA1): a possible link between inflammation and reverse cholesterol transport[J]. Mol Med, 2010, 16: 438-449.
Chu FC, Kuwabara T, Cogan DG, et al. Ocular manifestations of familial high-density lipoprotein deficiency (Tangier disease)[J]. Arch Ophthalmol, 1979, 97(10): 1926-1928.
Yin K, Agrawal DK. High-density lipoprotein: a novel target for antirestenosis therapy[J]. Clin Transl Sci, 2014, 7(6): 500-511.
Sasongko MB, Wong TY, Nguyen TT, et al. Serum apolipoproteins are associated with systemic and retinal microvascular function in people with diabetes[J]. Diabetes, 2012, 61(7): 1785-1792.
Davidson MH. Apolipoprotein measurements: is more widespread use clinically indicated?[J]. Clin Cardiol, 2009, 32(9): 482-486.
Rosenson RS, Brewer HB, Ansell BJ, et al. Dysfunctional HDL and atherosclerotic cardiovascular disease[J]. Nat Rev Cardiol,2016,13(1):48-60.
Poteryaeva ON, Usynin IF. Antidiabetic role of high density lipoproteins[J]. Biomed Khim, 2018, 64(6): 463-471.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构