华南肿瘤学国家重点实验室//中山大学肿瘤防治中心核医学科,广东 广州 510060
庞春兰,本科,研究方向:肿瘤核医学,E-mail: pangchl@sysucc.org.cn
纸质出版日期:2021-03-20,
收稿日期:2020-12-02,
扫 描 看 全 文
庞春兰,关邵翔,杨小春等.儿童全身18F-FDG PET/CT有效剂量的临床研究[J].中山大学学报(医学科学版),2021,42(02):271-278.
PANG Chun-lan,GUAN Shao-xiang,YANG Xiao-chun,et al.Clinical Study of Effective Dose for Pediatric Whole-body 18F-FDG PET/CT Examination[J].Journal of Sun Yat-sen University(Medical Sciences),2021,42(02):271-278.
庞春兰,关邵翔,杨小春等.儿童全身18F-FDG PET/CT有效剂量的临床研究[J].中山大学学报(医学科学版),2021,42(02):271-278. DOI:
PANG Chun-lan,GUAN Shao-xiang,YANG Xiao-chun,et al.Clinical Study of Effective Dose for Pediatric Whole-body 18F-FDG PET/CT Examination[J].Journal of Sun Yat-sen University(Medical Sciences),2021,42(02):271-278. DOI:
目的
2
评估儿童行单次全身
18
F-FDG PET/CT检查所受辐射的有效剂量。
方法
2
2019年7月至2020年4月在中山大学肿瘤防治中心核医学科行
18
F-FDG PET/CT检查的50例儿童患者,在自动曝光条件下根据ICRP102用剂量长度乘积(
DLP
)值估算全身CT扫描所致辐射的有效剂量(ED)及根据ICRP128推荐的方法计算
18
F-FDG所致辐射的有效剂量,两剂量相加得到
18
F-FDG PET/CT受检儿童所受辐射的总有效剂量(
ED
TOTAL
)。按年龄将受检儿童分为3组:1~4岁(
n
=10)、5~9岁(
n
=25)、10~13岁(
n
=15),用One way-ANOVA比较不同年龄段的PET和全身CT有效剂量之和(
ED
PET+WBCT
)、PET有效剂量(
ED
PET
)、全身CT有效剂量(
ED
WBCT
),用Kruskal Wallis
H
检验比较不同年龄段的
DLP
值。按身高中位数(127.5 cm)分为2组:身高较高者(
n
=25)和身高较矮者(
n
=25),按体表面积(
BSA
)中位数(0.94 m
2
)分为2组:大
BSA
(
n
=27)和小
BSA
(
n
=23),采用独立样本
t
检验分析不同身高的
ED
PET+WBCT
、不同
BSA
的
ED
PET+WBCT
的差异是否存在统计学意义,
P
<0.05为差异有统计学意义。
结果
2
全部3组患儿
18
F-FDG PET/CT的
ED
TOTAL
为(4.42~14.35)mSv,平均(9.37±2.21)mSv,其中,
18
F-FDG PET产生的有效剂量(
ED
PET
)为(2.76~6.79)mSv,平均(4.49±0.96) mSv,总CT有效剂量(
ED
CT
)为1.66~8.19 mSv,平均(4.88±1.63)mSv,其中全身CT有效剂量(
ED
WBCT
)为(1.66~6.69)mSv,平均(3.26±1.05)mSv。不同年龄段的平均
DLP
值分别为135(115~179)mGy.cm、224(183~274)mGy.cm及252(199~319)mGy.cm,差异存在统计学意义(
H
=17.191,
P
=0.000),组间比较,1~4岁低于5~9岁及10~13岁组,差异有统计学意义(
P
分别为0.006和0.000)。在不同身高和
BSA
的亚组分析中,不同身高的
ED
PET+WBCT
差异不存在统计学意义(
t
=-0.545
, P
=0.588)。小
BSA
组及大
BSA
组的
ED
PET+WBCT
分别为(7.25±1.84)mSv和(8.34±1.69)mSv,大
BSA
组高于小
BSA
组,差异有统计学意义(
t
=-2.191,
P
=0.033)。
结论
2
BSA
较大的儿童全身
18
F-FDG PET/CT有效剂量较大,扫描设备及技术的更新有助于降低儿童全身
18
F-FDG PET/CT有效剂量。
Objective
2
To evaluate the effective dose (ED) of radiation received by children undergoing whole-body
18
F-FDG PET/CT examination.
Methods
2
We retrospectively reviewed 50 pediatric patients undergoing
18
F-FDG PET/CT examination in the Nuclear Medicine Department of Sun Yat-sen University Cancer Center from July 2019 to April 2020. With automatic exposure control technique, ED of radiation from the whole-body CT scan was calculated by using dose length product (DLP) method as recommended by International Comission on Radiological Protection (ICRP) Publication 102 and ED from
18
F-FDG PET was estimated by means of the model proposed by ICRP Publication 128. The two doses mentioned above were added together to obtain the total ED (
ED
TOTAL
) for
18
F-FDG PET/CT examination. The children were divided into 3 groups based on age: 1~4 years old (
n
=10), 5~9 years old (
n
=25) and 10~13 years old (
n
=15). One way-ANOVA was used to analyze ED from PET (
ED
PET
), ED from whole-body CT (
ED
WBCT
) as well as the sum of
ED
PET
and
ED
WBCT
(
ED
PET+WBCT
) in different age groups. Kruskal-Wallis
H
test was used to compare the
DLP
values of different age groups. The children were then divided into 2 groups based on median height (127.5 cm): taller children (
n
=25) and shorter children (
n
=25); 2 groups based on median body surface area (
BSA
) (0.94 m
2
): larger
BSA
(
n
=27) and smaller
BSA
(
n
=23). Independent sample
t
test was used to analyze whether there were statistically significant differences between
ED
PET+WBCT
of different height groups and between
ED
PET+WBCT
of different
BSA
groups.
P
<0.05 means the difference was statistically significant.
Results
2
ED
TOTAL
for
18
F-FDG PET/CT of all three groups of children was (4.42~14.35) mSv, with an average ED of (9.37±2.21) mSv.
ED
PET
from
18
F-FDG PET was (2.76~6.79) mSv, with an average ED of (4.49±0.96) mSv; the total effective CT dose (
ED
CT
) was (1.66~8.19) mSv, with an average ED of (4.88±1.63) mSv; and
ED
WBCT
was 1.66~6.69 mSv, with an average ED of (3.26±1.05) mSv. The average
DLP
values at different age groups were 135 (115~179) mGy.cm, 224 (183~274) mGy.cm and 252 (199~319) mGy.cm, with statistically significant difference (
H
=17.191,
P
=0.000). The average
DLP
value in the group of 1~4 years old was significantly lower than that in the group of 5~9 years old (
P=
0.006 ) as well as than that in the group of 10~14years old (
P=
0.000). No difference was found in
ED
PET+WBCT
between different height groups (
t
=-0.545
, P
=0.588).
ED
PET+WBCT
for larger and smaller
BSA
groups were (7.25±1.84) mSv and (8.34±1.69) mSv respectively, with statistically significant difference (
t
=-2.191,
P
=0.033).
Conclusion
2
ED for whole body
18
F-FDG PET/CT in children with larger
BSA
was higher. The update of scanning equipment and technology could help reduce ED for whole body
18
F-FDG PET/CT in children.
18F-FDG PET/CT儿童有效剂量体表面积
18F-FDG PET/CTchildreneffective dosebody surface area
Padma S, Sundaram PS, Tewari A. PET/CT in paediatric malignancies-an update[J]. Indian J Med Paediatr Oncol, 2016, 37(3): 131.
Sabri A, Wong J. Estimation of effective dose for whole body 18F-FDG PET/CT examination[C]. J Phys: Conf Ser, 2019, 1248: 012006.
Fahey FH, Goodkind A, Macdougall RD, et al. Operational and dosimetric aspects of pediatric PET/CT[J]. J Nucl Med, 2017, 58(9): 1360-1366.
Li Y, Jiang L, Wang H, et al. Effective radiation dose of 18F-FDG PET/CT: how much does diagnostic CT contribute?[J]. Radiat Prot Dosimetry, 2019, 187(2): 183-190.
岳保荣, 牛延涛. 多排探测器计算机 X 线体层摄影患者剂量控制 [M]. 北京: 人民军医出版社. 2011.
Yue BR, Niu YT. Managing patient dose in multi-detector computed tomography (MDCT)[M]. BeiJing: People's Military Med Press,2011.
Mattsson S, Johansson L, Svegborn SL, et al. Radiation dose to patients from radiopharmaceuticals: a compendium of current information related to frequently used substances[J]. Ann ICRP, 2015, 44(S2): 7-321.
Niven E, Nahmias C. Absorbed dose to very low birth weight infants from 18F-fluorodeoxyglucose[J]. Health Phys, 2003, 84(3): 307-316.
Gelfand MJ, Parisi MT, Treves ST. Pediatric radiopharmaceutical administered doses: 2010 North American consensus guidelines[J]. J Nucl Med, 2011, 52(2): 318-322.
Lassmann M, Biassoni L, Monsieurs M, et al. The new EANM paediatric dosage card[J]. Eur J Nucl Med Mol Imaging, 2007, 34(5): 796-798.
Dhalisa H, Mohamad A, Rafidah Z. Radiation assessment to paediatric with F-18-FDG undergo whole-body PET/CT examination[C]. AIP Conf Pro, 2016, 1704: 030004.
Qi Z, Gates EL, O’brien MM, et al. Radiation dose reduction through combining positron emission tomography/computed tomography (PET/CT) and diagnostic CT in children and young adults with lymphoma[J]. Pediatr radiol, 2018, 48(2): 196-203.
Hussin D, Said M, Ali N, et al. The effective dose result of 18F-FDG PET-CT paediatric patients[C]. J Phys: Conf Ser, 2017, 851: 012004.
吴震宇,王辉. 儿童全身18F-FDG PET/CT 辐射剂量评估[J]. 放射免疫学杂志, 2012, 25(5): 494-497.
Wu ZY, Wang H. Evaluation of radiation dose in pediatric whole-body dual-modality 18F-FDG PET/CT examinations[J]. J Radioimmunol, 2012, 25(5): 494-497.
Quinn B, Dauer Z, Pandit-Taskar N, et al. Radiation dosimetry of 18F-FDG PET/CT: incorporating exam-specific parameters in dose estimates[J]. BMC med imaging, 2016, 16(1): 41.
Parisi MT, Bermo MS, Alessio AM, et al. Optimization of pediatric PET/CT[C]. Semin Nucl Med, 2017, 47: 258-274.
Inoue Y, Nagahara K, Inoki Y, et al. Clinical evaluation of CT radiation dose in whole-body 18 F-FDG PET/CT in relation to scout imaging direction and arm position[J]. Ann Nucl Med, 2019, 33(3): 169-176.
吴一田, 耿建华, 杜召猛, 等. PET/CT 中 CT 自动管电流调制模式下受检者有效剂量的研究[J]. 中国辐射卫生, 2018, 27(1): 39-43.
Wu YT, Geng JH, Du ZM, et al. Study on the effective dose of CT in PET/CT on automatic tube current modulation[J]. Chin J Radiol Health, 2018, 27(1): 39-43.
Bertolini V, Palmieri A, Bassi M, et al. CT protocol optimisation in PET/CT: a systematic review[J]. EJNMMI phys, 2020, 7(1): 1-25.
陈跃, 杨吉刚, 邵付强, 等.儿科核医学诊疗技术操作规范和临床应用指南[J]. 中国医学影像技术, 2017, 33(10): 1591-1595.
Chen Y, Yang JG, Zhao FQ, et al. Technical operation criteria and clinical application guidelines for pediatric nuclear medicine[J]. Chin J Med Imaging Technol, 2017, 33(10):1591-1595.
Lassmann M, Treves ST. Pediatric radiopharmaceutical administration: harmonization of the 2007 EANM paediatric dosage card (version 1.5. 2008) and the 2010 North American consensus guideline[J]. Eur J Nucl Med Mol Imaging, 2014, 41(8): 1636-1636.
Treves ST, Gelfand MJ, Fahey FH, et al. 2016 update of the north American consensus guidelines for pediatric administered radiopharmaceutical activities[J]. J Nucl Med,2016, 57(12): 15N-18N.
Milana MA, Marko E, Miroslav L, et al. Importance of PET/CT scan use in planning radiation therapy for lymphoma[J]. Asian Pac J Cancer Prev, 2015, 16: 2051-2054.
Kwatra NS, Lim R, Gee MS, et al. PET/MR imaging:current updates on pediatric applications[J]. Magn Reson Imaging Clin N Am, 2019, 27(2): 387-407.
Badawi RD, Shi H, Hu P, et al. First human imaging studies with the EXPLORER total-body PET scanner[J]. J Nucl Med, 2019, 60(3): 299-303.
Cherry SR, Jones T, Karp JS, et al. Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care[J]. J Nucl Med, 2018, 59(1): 3-12.
0
浏览量
0
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构